共查询到20条相似文献,搜索用时 15 毫秒
1.
New, technically sophisticated measurement techniques must not be used blindly. In order to ensure accurate measurements, the limits of such devices must be well known. In this study a single-fiber optic reflection probe was thoroughly tested in two-phase gas—solid flows for the measurement of particle velocity and concentration. A novel, dynamic calibration procedure for particle concentration measurements has been proposed and tested in the downflow reactor section of a pilot-scale circulating fluidized bed. The results show that, as a particle concentration measuring device, the probe is very sensitive to electrostatic effects in the flow medium. The velocity measurements are relatively unaffected and were shown to be reproducible with errors of between 10 and 15% for particle velocities of up to 8 m/s. 相似文献
2.
The bubble size distributions are measured for the air-water system as a function of air velocity at room temperature in two bubble columns. High speed cinephotography and fiber optic probe techniques are used to measure the bubble size. Our limited measurements suggest that the bubble size may be independent of gas velocity in the range 3.6 to 9.2 cm/s and may be dependent on column diameter with smaller bubbles for narrower columns. The bubble size appears to be smaller at the column wall than at distances away from the wall. 相似文献
3.
三相循环流化床中气泡上升速度的实验研究 总被引:4,自引:1,他引:4
开发了一种新型的光纤探头多相流气泡测试系统,可用于气-液两相和气-液-固三相体系中气泡参数的测定。应用此系统研究了三相循环流环化床中不同径同位置气泡的上升速度分布,气泡上升速度均值的径向布以及操作条件对这现任中分布的影响。 相似文献
4.
Miriam Petitti Andrea Nasuti Daniele L. Marchisio Marco Vanni Giancarlo Baldi Nicola Mancini Fabrizio Podenzani 《American Institute of Chemical Engineers》2010,56(1):36-53
Local gas hold‐up and bubbles size distributions have been modeled and validated against experimental data in a stirred gas–liquid reactor, considering two different spargers. An Eulerian multifluid approach coupled with a population balance model (PBM) has been employed to describe the evolution of the bubble size distribution due to break‐up and coalescence. The PBM has been solved by resorting to the quadrature method of moments, implemented through user defined functions in the commercial computational fluid dynamics code Fluent v. 6.2. To overcome divergence issues caused by moments corruption, due to numerical problems, a correction scheme for the moments has been implemented; simulation results prove that it plays a crucial role for the stability and the accuracy of the overall approach. Very good agreements between experimental data and simulations predictions are obtained, for a unique set of break‐up and coalescence kinetic constants, in a wide range of operating conditions. © 2009 American Institute of Chemical Engineers AIChE J, 2010 相似文献
5.
The optic probe technique is widely used to investigate bubble reactors. To derive values of bubble local velocities and bubble local sizes, a specific signal treatment is usually applied under severe assumptions for bubble path and shape. However, in most industrial reactors, bubble motion is chaotic and no common shape can be assumed.In this work, the reliability of the signal treatment associated with the optic probe technique is examined for distorted and tumbling bubbles. A double-tip optic probe is settled in a glass tank and the rise of bubbles is filmed simultaneously. Several trains of bubbles are studied, interactions between bubbles being gradually increased.Referring to image analysis, several ways to derive mean bubble velocities from optic probe data have been compared. Crenels from front tip and rear tip raw signals are associated and individual bubble velocities are derived. Nevertheless, complete velocity distributions are difficult to obtain, as they depend on the choice of the time within which the bubble is searched on the second tip. Using a simpler approach it is shown that the most probable velocity, calculated through the raw signals inter-correlation, is a correct estimation of the average bubble velocity.Concerning bubble size, bubble chord distributions show too high values due to bubble distortion and deviation. A simplified estimation of bubble mean Sauter diameter, using the most reliable measurements only (i.e., local gas hold-up, local mean bubbling frequency, and most probable bubble velocity), was tested for highly distorted bubbles; this method was validated both in water and cyclohexane. 相似文献
6.
A new concept to harness bubble dynamics in bubbling fluidization of Geldart D particles was proposed. Various geometrical declinations of a cold‐prototype corrugated‐wall bubbling fluidized bed were compared at different flow rates (Ug) to conventional flat‐wall fluidized bed using high‐speed digital image analysis. Hydrodynamic studies were carried out to appraise the effect of triangular‐shaped wall corrugation on incipient fluidization, bubble coalescence (size and frequency), bubble rise velocity, and pressure drop. Bubble size and rise velocity in corrugated‐wall beds were appreciably lower, at given Ug/Umb, than in flat‐wall beds with equal flow cross‐sectional areas and initial bed heights. The decrease (increase) in size (frequency) of bubbles during their rise was sustained by their periodic breakups while protruding through the necks between corrugated plates. Euler‐Euler transient full three‐dimensional computational fluid dynamic simulations helped shape an understanding of the impact of corrugation geometry on lowering the minimum bubbling fluidization and improving gas distribution. © 2011 American Institute of Chemical Engineers AIChE J, 2012 相似文献
7.
Droplet velocity,size, and local holdup measurements in an extraction column by tri‐sensor optical probe
下载免费PDF全文

The tri‐sensor optical probe was applied to study the hydrodynamic characteristic in a pulsed sieve plate extraction column. Two immiscible liquids consisting of the dispersed phase (kerosene) and continuous phase (water) were introduced in countercurrent operation. Local parameters such as droplet velocity, drop size, and holdup of the dispersed phase were obtained. It was found that the tri‐sensor optical probe could be used as an efficient and convenient technique for measuring local hydrodynamic parameters inside the pulsed sieve plate extraction column. Furthermore, the results indicated that pulsation intensity imposed more influence on these hydrodynamic parameters than two‐phase superficial flow rates in the investigated ranges. Experimental results were found to be in good agreement with the empirical correlations reported in literature. © 2015 American Institute of Chemical Engineers AIChE J, 61: 3958–3963, 2015 相似文献
8.
Dispersed phase holdup and the bubble size distribution were measured in a reciprocating plate column under cocurrent upflow and countercurrent flow of gas and liquid phases. The response of the system to a variation in design and operating conditions was found similar to that for liquid–liquid contacting; the magnitude of response, however, differed significantly between them. Taking into consideration the dominant forces encountered in gas–liquid dispersions, the experimental data are satis–factorily correlated in terms of Froude, Weber and Gallileo numbers. 相似文献
9.
Swapna Rabha Markus Schubert Michael Wagner Dirk Lucas Uwe Hampel 《American Institute of Chemical Engineers》2013,59(5):1709-1722
Gas hold‐up and bubble size distribution in a slurry bubble column (SBC) were measured using the advanced noninvasive ultrafast electron beam X‐ray tomography technique. Experiments have been performed in a cylindrical column (DT = 0.07 m) with air and water as the gas and liquid phase and spherical glass particles (dP = 100 μm) as solids. The effects of solid concentration (0 ≤ Cs ≤ 0.36) and superficial gas velocity (0.02 ≤ UG ≤ 0.05 m/s) on the flow structure, radial gas hold‐up profile and approximate bubble size distribution at different column heights in a SBC were studied. Bubble coalescence regime was observed with addition of solid particles; however, at higher solid concentrations, larger bubble slugs were found to break‐up. The approximate bubble size distribution and radial gas hold‐up was found to be dependent on UG and Cs. The average bubble diameter calculated from the approximate bubble size distribution was increasing with increase of UG. The average gas hold‐up was calculated as a function of UG and agrees satisfactorily with previously published findings. The average gas hold‐up was also predicted as a function of Cs and agrees well for low Cs and disagrees for high Cs with findings of previous literature. © 2012 American Institute of Chemical Engineers AIChE J, 59: 1709–1722, 2013 相似文献
10.
Experiments involving a bubbling, gas‐fluidized bed with Gaussian and lognormal particle‐size distributions (PSDs) of Geldart Group B particles have been carried out, with a focus on bubble measurements. Previous work in the same systems indicated the degree of axial species segregation varies non‐monotonically with respect to the width of lognormal distributions. Given the widely accepted view of bubbles as “mixing agents,” the initial expectation was that bubble characteristics would be similarly non‐monotonic. Surprisingly, results show that measured bubble parameters (frequency, velocity, and chord length) increase monotonically with increasing width for all PSDs investigated. Closer inspection reveals a bubble‐less bottom region for the segregated systems, despite the bed being fully fluidized. More specifically, results indicate that, the larger the bubble‐less layer is, the more segregated the system becomes. The direct comparison between bubbling and segregation patterns performed provides a more complete physical picture of the link between the two phenomena. © 2011 American Institute of Chemical Engineers AIChE J, 2011 相似文献
11.
S. F. Moujaes 《加拿大化工杂志》1990,68(3):504-510
An alternate and easy method of constructing an optical liber probe tip is presented for the study of different two-phase flow variables such as local time-averaged void fraction, gas velocity and interfacial bubble passage frequency. The proposed probe tip has similar response characteristics to the “U-bend” single fiber probe and is easier to construct than the 90° wedge tipped probe. The signal from the spherical tip seems to be insensitive to changes in bubble velocity as opposed to the 90° wedge and is more advantageous at higher velocities. The signal from the spherical tip has the same time duration as the signal changes from liquid to gas and vice versa for the same bubble velocity. A simplified model is presented to describe the balance of forces around the spherical tip when a bubble is penetrated. The model offers a qualitative explanation of why the non-dimensional response intensity decreases as the bubble velocity increases. 相似文献
12.
Salman Movahedirad Asghar Molaei Dehkordi Niels Gerbrand Deen Martin van Sint Annaland J. A. M. Kuipers 《American Institute of Chemical Engineers》2012,58(11):3306-3317
A phenomenological discrete bubble model has been developed for freely bubbling dense gas–solid fluidized beds and validated for a pseudo‐two‐dimensional fluidized bed. In this model, bubbles are treated as distinct elements and their trajectories are tracked by integrating Newton's equation of motion. The effect of bubble–bubble interactions was taken into account via a modification of the bubble velocity. The emulsion phase velocity was obtained as a superposition of the motion induced by individual bubbles, taking into account bubble–bubble interaction. This novel model predicts the bubble size evolution and the pattern of emulsion phase circulation satisfactorily. Moreover, the effects of the superficial gas velocity, bubble–bubble interactions, initial bubble diameter, and the bed aspect ratio have been carefully investigated. The simulation results indicate that bubble–bubble interactions have profound influence on both the bubble and emulsion phase characteristics. Furthermore, this novel model may become a valuable tool in the design and optimization of fluidized‐bed reactors. © 2012 American Institute of Chemical Engineers AIChE J, 2012 相似文献
13.
Trajectory modeling of gas–liquid flow in microchannels with stochastic differential equation and optical measurement
下载免费PDF全文

Lexiang Zhang Feng Xin Dongyue Peng Weihua Zhang Yuexing Wang Xiaodong Chen Yi Wang 《American Institute of Chemical Engineers》2015,61(11):4028-4034
The numbering‐up of microchannel reactors definitely faces great challenge in uniformly distributing fluid flow in every channel, especially for multiphase systems. A model of stochastic differential equations (SDEs) is proposed based on the experimental data recorded by a long‐term optical measurement to well quantify the stochastic trajectories of gas bubbles and liquid slugs in parallel microchannels interconnected with two dichotomic distributors. The expectation and variance of each subflow rate are derived explicitly from the SDEs associated with the Fokker–Planck equation and solved numerically. A bifurcation in the trajectory is found using the original model, then a modification on interactions of feedback and crosstalk is introduced, the evolutions of subflow rates calculated by the modified model match well with experimental results. The established methodology is helpful for characterizing the flow uniformity and numbering‐up the microchannel reactors of multiphase system. © 2015 American Institute of Chemical Engineers AIChE J, 61: 4028–4034, 2015 相似文献
14.
H. Essadki H. Delmas H. F. Svendsen 《Journal of chemical technology and biotechnology (Oxford, Oxfordshire : 1986)》1995,62(3):301-309
Local velocity gradients on a solid spherical surface have been studied in a bubble column and in two- and three-phase fluidized beds, in order to clarify the influence of gas flow. The electrochemical method, measuring apparent local mass transfer coefficients, was verified and used to obtain the local velocity gradients, shear stresses and total frictional forces. The observed mass transfer rate was independent of liquid velocity, owing to a non-changing flow structure around the particles and not to averaging opposing effects. The identity in flow structure also held for three-phase fluidized beds up to a superficial gas velocity of 5 cm s?1. The dramatic increase in velocity gradient on gas introduction was not a result of decreased homogenous density, but was caused by a change in the turbulent structure around a particle, leaving a larger portion of the total drag as frictional drag, thus improving the mass transfer characteristics of the bed. Use of velocity gradient measurements, including span of fluctuations and exposure time, to predict biomass growth and mechanical degradation in a reactor is also discussed. 相似文献
15.
16.
A. Shukla 《Chemical engineering science》2006,61(8):2468-2475
Acoustic velocity measurements have been used to estimate particle size and concentration in liquid-solid (LS) and gas-liquid-solid (GLS) systems. The slurries of 34 and particles and their binary mixtures in distilled water are tested in concentration range 2-10 vol% in batch operations. In GLS systems, the superficial gas velocity is varied from 0.03 to 0.10 m/s. The presence of gas bubbles affected the acoustic velocity measurements significantly. A data filtration procedure is developed to minimize the effect of gas phase and estimate variations in gas-free liquid-solid region. The filtered data are used to predict concentration using calibration equations and theoretical velocity prediction models of LS systems. The estimated concentrations are comparable with sedimentation-dispersion model predictions in GLS system. This technique is also used to predict average particle size and composition in binary mixtures of particles. 相似文献
17.
Amir Eskanlou Morteza Mirmogaddam Mohsen Hemmati Chegeni Behzad Vaziri Hassas 《分离科学与技术》2019,54(11):1795-1802
In flotation, among the key parameters that dictate the hydrodynamic characteristics are bubble rising velocity and trajectory. This study aims to investigate the trajectory and rise velocity of loaded and bare bubbles using an experimental setup and video processing technique. After acquiring the videos of rising bubbles, using the background subtraction algorithm, bubbles were detected and their rise velocity and trajectory were determined with regard to the changes in the coordinates of bubbles’ centers. It was shown that bare bubbles have a zigzag trajectory, while for loaded bubbles the trajectory was close to the straight vertical path. In addition, with increasing bubble size, the rise velocity and the deviation from the straight path increase. 相似文献
18.
Bin Hu 《Chemical engineering science》2007,62(10):2652-2662
A flying optical probe technique has been developed and employed to measure bubble size above sieve trays in an air-water facility simulating cross-flow distillation (CRODIS). Despite the highly turbulent conditions occurring in the flows investigated, successful measurements were made of bubble size distributions at a series of levels above the trays. Using this technique, experiments are carried out on the CRODIS facility covering a range of gas and liquid flowrates and several tray configurations and the results are presented in this paper. Gas flowrate, sieve hole size and weir height were found to exhibit a significant effect on bubble size distribution, whereas liquid flowrate was shown to have negligible influence. 相似文献
19.
Vinit P. Chilekar John van der Schaaf Ben F. M. Kuster Johan T. Tinge Jaap C. Schouten 《American Institute of Chemical Engineers》2010,56(3):584-596
This article reports on the influence of elevated pressure and catalyst particle lyophobicity at particle concentrations up to 3 vol % on the hydrodynamics and the gas‐to‐liquid mass transfer in a slurry bubble column. The study was done with demineralized water (aqueous phase) and Isopar‐M oil (organic phase) slurries in a 0.15 m internal diameter bubble column operated at pressures ranging from 0.1 to 1.3 MPa. The overall gas hold‐up, the flow regime transition point, the average large bubble diameter, and the centerline liquid velocity were measured along with the gas–liquid mass transfer coefficient. The gas hold‐up and the flow regime transition point are not influenced by the presence of lyophilic particles. Lyophobic particles shift the regime transition to a higher gas velocity and cause foam formation. Increasing operating pressure significantly increases the gas hold‐up and the regime transition velocity, irrespective of the particle lyophobicity. The gas–liquid mass transfer coefficient is proportional to the gas hold‐up for all investigated slurries and is not affected by the particle lyophobicity, the particle concentration, and the operating pressure. A correlation is presented to estimate the gas–liquid mass transfer coefficient as a function of the measured gas hold‐up: $k_{\rm l}a_{\rm l}/\varepsilon_{\rm g} = 3.0 \sqrt{Du_{\rm b}/d_{\rm b}^3}\;{\rm s}^{-1}$ . © 2009 American Institute of Chemical Engineers AIChE J, 2010 相似文献
20.
M. Elena Díaz Alfredo Iranzo Daniel Cuadra Rubn Barbero Francisco J. Montes Miguel A. Galn 《Chemical engineering journal (Lausanne, Switzerland : 1996)》2008,139(2):363-379
In the present work, a computational model based on an Eulerian–Eulerian approach was used for the simulation of the transient two-phase flow in a rectangular partially aerated bubble column. Superficial gas velocities (UG) ranging from 0.24 to 2.30 cm/s were used throughout both the experiments and the simulations. The calculated results were verified by comparing them with experimental data including measurements of gas hold-up, plume oscillation period (POP) and Sauter mean bubble diameter. The study shows the effect of mesh refinement, time-step and physical model selection, the latter regarding the role of bubble size distribution and non-drag forces, on the computational results. According to the results presented here, the representation of bubble populations using multiple size groups (MUSIG model) instead of a single group improves the prediction of the experimental parameters under study. Additionally, the results obtained after including the virtual mass force term do not differ considerably from those obtained including only the drag force. On the contrary, as a consequence of introducing the lift force term into the model, the gas hold-up is overestimated and a non-symmetric bubble plume oscillation appears, a fact that is not experimentally observed. 相似文献