首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
New, technically sophisticated measurement techniques must not be used blindly. In order to ensure accurate measurements, the limits of such devices must be well known. In this study a single-fiber optic reflection probe was thoroughly tested in two-phase gas—solid flows for the measurement of particle velocity and concentration. A novel, dynamic calibration procedure for particle concentration measurements has been proposed and tested in the downflow reactor section of a pilot-scale circulating fluidized bed. The results show that, as a particle concentration measuring device, the probe is very sensitive to electrostatic effects in the flow medium. The velocity measurements are relatively unaffected and were shown to be reproducible with errors of between 10 and 15% for particle velocities of up to 8 m/s.  相似文献   

2.
The bubble size distributions are measured for the air-water system as a function of air velocity at room temperature in two bubble columns. High speed cinephotography and fiber optic probe techniques are used to measure the bubble size. Our limited measurements suggest that the bubble size may be independent of gas velocity in the range 3.6 to 9.2 cm/s and may be dependent on column diameter with smaller bubbles for narrower columns. The bubble size appears to be smaller at the column wall than at distances away from the wall.  相似文献   

3.
田道贵  阎昌琪  孙立成 《化工学报》2013,64(9):3117-3122
光纤传感器作为纤维光学领域中的新技术,在两相流动局部参数测量中得到了越来越广泛的应用。在假设气泡对称面垂直于气泡运动方向的基础上,对四传感器探针测量局部瞬时气泡速度的数学原理进行了详细推导,给出了新的计算气泡速度矢量的方法和模型,并运用自制的四传感器光纤探针,对气液两相流动中的气泡运动速度和方向进行了测量。实验中通过探针方法测得气相流速相对于流量计测量值的平均偏差为9%,表明新的探针测量方法精度较高,能够用于两相流中气泡速度矢量测量。进一步的实验研究表明,不同流动条件下,局部空泡份额及界面面积浓度(IAC)沿通道径向呈“壁峰型”或“核峰型”的分布规律。  相似文献   

4.
三相循环流化床中气泡上升速度的实验研究   总被引:5,自引:1,他引:4  
开发了一种新型的光纤探头多相流气泡测试系统,可用于气-液两相和气-液-固三相体系中气泡参数的测定。应用此系统研究了三相循环流环化床中不同径同位置气泡的上升速度分布,气泡上升速度均值的径向布以及操作条件对这现任中分布的影响。  相似文献   

5.
Local gas hold‐up and bubbles size distributions have been modeled and validated against experimental data in a stirred gas–liquid reactor, considering two different spargers. An Eulerian multifluid approach coupled with a population balance model (PBM) has been employed to describe the evolution of the bubble size distribution due to break‐up and coalescence. The PBM has been solved by resorting to the quadrature method of moments, implemented through user defined functions in the commercial computational fluid dynamics code Fluent v. 6.2. To overcome divergence issues caused by moments corruption, due to numerical problems, a correction scheme for the moments has been implemented; simulation results prove that it plays a crucial role for the stability and the accuracy of the overall approach. Very good agreements between experimental data and simulations predictions are obtained, for a unique set of break‐up and coalescence kinetic constants, in a wide range of operating conditions. © 2009 American Institute of Chemical Engineers AIChE J, 2010  相似文献   

6.
在一套高约18 m、内径φ100 mm的提升管冷态实验装置上,根据PV-6D光纤探头的测量结果,提出了一种基于整个采样时间计算提升管颗粒局部流率和速度的改进方法,并与文献方法进行了对比。结果表明,两种方法计算的颗粒局部流率和速度相差较大,本文和文献两种方法计算的截面平均颗粒流率与实测值间的最大、最小和平均相对偏差分别为606.9%、241.3%,221.4%、89.5%和388.9%、145.6%,本文方法测量的颗粒流率偏差相对较小。文献方法计算的截面平均颗粒速度均大于操作气速,其气固间滑落速度和滑落系数分别在-1.6~-4.7 m·s-1及0.56~0.90间变化,与提升管内的气固实际流动存在很大差别;本方法计算的截面平均颗粒速度均小于操作气速,其气固间滑落速度和滑落系数分别在0.6~9.6 m·s-1及1.11~2.14间变化。反射型光纤探头在测量颗粒浓度时存在的一些问题是导致本文方法测量的颗粒流率、滑落速度和滑落系数偏大的主要原因。此外,根据光纤测量结果,提出了两个计算提升管颗粒循环强度的关系式,可以替代现有的容积法测量。  相似文献   

7.
8.
The optic probe technique is widely used to investigate bubble reactors. To derive values of bubble local velocities and bubble local sizes, a specific signal treatment is usually applied under severe assumptions for bubble path and shape. However, in most industrial reactors, bubble motion is chaotic and no common shape can be assumed.In this work, the reliability of the signal treatment associated with the optic probe technique is examined for distorted and tumbling bubbles. A double-tip optic probe is settled in a glass tank and the rise of bubbles is filmed simultaneously. Several trains of bubbles are studied, interactions between bubbles being gradually increased.Referring to image analysis, several ways to derive mean bubble velocities from optic probe data have been compared. Crenels from front tip and rear tip raw signals are associated and individual bubble velocities are derived. Nevertheless, complete velocity distributions are difficult to obtain, as they depend on the choice of the time within which the bubble is searched on the second tip. Using a simpler approach it is shown that the most probable velocity, calculated through the raw signals inter-correlation, is a correct estimation of the average bubble velocity.Concerning bubble size, bubble chord distributions show too high values due to bubble distortion and deviation. A simplified estimation of bubble mean Sauter diameter, using the most reliable measurements only (i.e., local gas hold-up, local mean bubbling frequency, and most probable bubble velocity), was tested for highly distorted bubbles; this method was validated both in water and cyclohexane.  相似文献   

9.
A new concept to harness bubble dynamics in bubbling fluidization of Geldart D particles was proposed. Various geometrical declinations of a cold‐prototype corrugated‐wall bubbling fluidized bed were compared at different flow rates (Ug) to conventional flat‐wall fluidized bed using high‐speed digital image analysis. Hydrodynamic studies were carried out to appraise the effect of triangular‐shaped wall corrugation on incipient fluidization, bubble coalescence (size and frequency), bubble rise velocity, and pressure drop. Bubble size and rise velocity in corrugated‐wall beds were appreciably lower, at given Ug/Umb, than in flat‐wall beds with equal flow cross‐sectional areas and initial bed heights. The decrease (increase) in size (frequency) of bubbles during their rise was sustained by their periodic breakups while protruding through the necks between corrugated plates. Euler‐Euler transient full three‐dimensional computational fluid dynamic simulations helped shape an understanding of the impact of corrugation geometry on lowering the minimum bubbling fluidization and improving gas distribution. © 2011 American Institute of Chemical Engineers AIChE J, 2012  相似文献   

10.
Gas–liquid mass transfer in pulp fibre suspensions in a batch‐operated bubble column is explained by observations of bubble size and shape made in a 2D column. Two pulp fibre suspensions (hardwood and softwood kraft) were studied over a range of suspension mass concentrations and gas flow rates. For a given gas flow rate, bubble size was found to increase as suspension concentration increased, moving from smaller spherical/elliptical bubbles to larger spherical‐capped/dimpled‐elliptical bubbles. At relatively low mass concentrations (Cm = 2–3% for the softwood and Cm ? 7% for the hardwood pulp) distinct bubbles were no longer observed in the suspension. Instead, a network of channels formed through which gas flowed. In the bubble column, the volumetric gas–liquid mass transfer rate, kLa, decreased with increasing suspension concentration. From the 2D studies, this occurred as bubble size and rise velocity increased, which would decrease overall bubble surface area and gas holdup in the column. A minimum in kLa occurred between Cm = 2% and 4% which depended on pulp type and was reached near the mass concentration where the flow channels first formed.  相似文献   

11.
The tri‐sensor optical probe was applied to study the hydrodynamic characteristic in a pulsed sieve plate extraction column. Two immiscible liquids consisting of the dispersed phase (kerosene) and continuous phase (water) were introduced in countercurrent operation. Local parameters such as droplet velocity, drop size, and holdup of the dispersed phase were obtained. It was found that the tri‐sensor optical probe could be used as an efficient and convenient technique for measuring local hydrodynamic parameters inside the pulsed sieve plate extraction column. Furthermore, the results indicated that pulsation intensity imposed more influence on these hydrodynamic parameters than two‐phase superficial flow rates in the investigated ranges. Experimental results were found to be in good agreement with the empirical correlations reported in literature. © 2015 American Institute of Chemical Engineers AIChE J, 61: 3958–3963, 2015  相似文献   

12.
基于超声衰减谱和相速度的颗粒粒径测量   总被引:2,自引:1,他引:2       下载免费PDF全文
章维  苏明旭  蔡小舒 《化工学报》2014,65(3):898-904
超声波在颗粒两相体系中传播,包含了大量颗粒粒径信息,结合理论模型,通过提取超声波有效衰减谱和相速度谱分析了颗粒的粒径分布。实验中,对体积分数为10%的3种不同粒径分布的聚苯乙烯-水悬浊液,通过双样法和插入取代法(单样法)分别获得宽带超声波衰减谱与相速度谱,以ECAH模型为理论基础,并分别用Twomey、ORT和Davidon-Fletcher-Powell优化算法,反演出悬浊液颗粒粒径分布。测量结果与显微镜图像法结果进行对比,中位径误差小于15%,表明了利用超声波衰减谱法(UASA)和相速度谱法(UPVSA)测量悬浊液颗粒粒径分布的可行性与可靠性。  相似文献   

13.
Knowledge of bubble size distribution (BSD) is critical for controlling mass transfer and reaction in bubble column reactors. Installation of internals further complicates this issue. The effects of internals on BSD were systematically investigated through experiments and computational fluid dynamics-population balance model simulations. The experiments show a bimodal distribution of the volume-based BSD except at low superficial gas velocity of 0.01 m/s. Addition of 20% internals increases the small-bubbles fraction, making the first BSD peak more evident. Correspondingly, the simulation reveals a prominent decrease of turbulent dissipation rate and turbulent kinetic energy. Moreover, while the unresolved turbulent kinetic energy dominates in the empty columns, the resolved portion becomes the major component in the presence of internals. This suggests that internals may redistribute turbulent kinetic energy in each scale, which provides more insights into the complex flow characteristics in the presence of internals and process intensification.  相似文献   

14.
微通道内浆料体系中的气泡生成特性及尺寸预测   总被引:1,自引:0,他引:1       下载免费PDF全文
利用高速摄像仪对T型微通道内浆料体系中的气泡生成频率和气泡尺寸进行了研究。以氮气作为分散相,含0.35%(质量分数)表面活性剂(SDS)不同浓度玻璃珠的甘油-水溶液为连续相。实验考察了弹状流下气液两相流量、颗粒浓度以及浆料表观黏度对气泡生成频率及气泡尺寸的影响。结果表明:在弹状流下,当分散相流量一定时,随着连续相流量的增大,气泡的生成频率增大而气泡尺寸减小。当连续相流量一定时,随着分散相流量的增大,气泡生成频率和气泡尺寸均增大。随着颗粒浓度的增大,浆料的表面张力减小,表观黏度增大,气泡生成频率增大而气泡尺寸减小。提出了T型微通道内浆料体系中生成气泡尺寸的预测模型,模型具有良好的预测精度。  相似文献   

15.
Dispersed phase holdup and the bubble size distribution were measured in a reciprocating plate column under cocurrent upflow and countercurrent flow of gas and liquid phases. The response of the system to a variation in design and operating conditions was found similar to that for liquid–liquid contacting; the magnitude of response, however, differed significantly between them. Taking into consideration the dominant forces encountered in gas–liquid dispersions, the experimental data are satis–factorily correlated in terms of Froude, Weber and Gallileo numbers.  相似文献   

16.
Using a five point conductivity technique local values of bubble size,bubble velocity and gas fractionhave been experimentally determined in a 288 mmID and 4.3 m high bubble column as a function of axial andradial position for the air/water and CO_2/N_2/aqueous MDEA systems.The experimental results are comparedwith predictions from a fundamental two-fluid model.The implementation of a non-steady lateral drag term inthe two-fluid model has been shown.In addition to improving the physical realism of the model,it is found togive slight improvements in the predictions of the distributions of local bubble size.Predictions of bubble size arefound in reasonable agreement with experimental values in the heterogeous flow regime,whereas they are stil1found to be unreliable at low gas velocities.Local void predictions are found in reasonable agreement with experi-mental values,but deviations occur in the homogeneous flow regime towards the wall.This is attributed to defi-ciencies in the simplified bubble size mode  相似文献   

17.
Gas hold‐up and bubble size distribution in a slurry bubble column (SBC) were measured using the advanced noninvasive ultrafast electron beam X‐ray tomography technique. Experiments have been performed in a cylindrical column (DT = 0.07 m) with air and water as the gas and liquid phase and spherical glass particles (dP = 100 μm) as solids. The effects of solid concentration (0 ≤ Cs ≤ 0.36) and superficial gas velocity (0.02 ≤ UG ≤ 0.05 m/s) on the flow structure, radial gas hold‐up profile and approximate bubble size distribution at different column heights in a SBC were studied. Bubble coalescence regime was observed with addition of solid particles; however, at higher solid concentrations, larger bubble slugs were found to break‐up. The approximate bubble size distribution and radial gas hold‐up was found to be dependent on UG and Cs. The average bubble diameter calculated from the approximate bubble size distribution was increasing with increase of UG. The average gas hold‐up was calculated as a function of UG and agrees satisfactorily with previously published findings. The average gas hold‐up was also predicted as a function of Cs and agrees well for low Cs and disagrees for high Cs with findings of previous literature. © 2012 American Institute of Chemical Engineers AIChE J, 59: 1709–1722, 2013  相似文献   

18.
An alternate and easy method of constructing an optical liber probe tip is presented for the study of different two-phase flow variables such as local time-averaged void fraction, gas velocity and interfacial bubble passage frequency. The proposed probe tip has similar response characteristics to the “U-bend” single fiber probe and is easier to construct than the 90° wedge tipped probe. The signal from the spherical tip seems to be insensitive to changes in bubble velocity as opposed to the 90° wedge and is more advantageous at higher velocities. The signal from the spherical tip has the same time duration as the signal changes from liquid to gas and vice versa for the same bubble velocity. A simplified model is presented to describe the balance of forces around the spherical tip when a bubble is penetrated. The model offers a qualitative explanation of why the non-dimensional response intensity decreases as the bubble velocity increases.  相似文献   

19.
Experiments involving a bubbling, gas‐fluidized bed with Gaussian and lognormal particle‐size distributions (PSDs) of Geldart Group B particles have been carried out, with a focus on bubble measurements. Previous work in the same systems indicated the degree of axial species segregation varies non‐monotonically with respect to the width of lognormal distributions. Given the widely accepted view of bubbles as “mixing agents,” the initial expectation was that bubble characteristics would be similarly non‐monotonic. Surprisingly, results show that measured bubble parameters (frequency, velocity, and chord length) increase monotonically with increasing width for all PSDs investigated. Closer inspection reveals a bubble‐less bottom region for the segregated systems, despite the bed being fully fluidized. More specifically, results indicate that, the larger the bubble‐less layer is, the more segregated the system becomes. The direct comparison between bubbling and segregation patterns performed provides a more complete physical picture of the link between the two phenomena. © 2011 American Institute of Chemical Engineers AIChE J, 2011  相似文献   

20.
A phenomenological discrete bubble model has been developed for freely bubbling dense gas–solid fluidized beds and validated for a pseudo‐two‐dimensional fluidized bed. In this model, bubbles are treated as distinct elements and their trajectories are tracked by integrating Newton's equation of motion. The effect of bubble–bubble interactions was taken into account via a modification of the bubble velocity. The emulsion phase velocity was obtained as a superposition of the motion induced by individual bubbles, taking into account bubble–bubble interaction. This novel model predicts the bubble size evolution and the pattern of emulsion phase circulation satisfactorily. Moreover, the effects of the superficial gas velocity, bubble–bubble interactions, initial bubble diameter, and the bed aspect ratio have been carefully investigated. The simulation results indicate that bubble–bubble interactions have profound influence on both the bubble and emulsion phase characteristics. Furthermore, this novel model may become a valuable tool in the design and optimization of fluidized‐bed reactors. © 2012 American Institute of Chemical Engineers AIChE J, 2012  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号