首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This investigation is focused on the influence of glass fiber surface treatment on the interlaminar fracture toughness of unidrectional laminates. Three different fiber surface treatments were considered: polyethylene treated fibers to get poor adhesion, silance treated fibers to get good bond strength, and industrial fibers without special treatments with the coupling agents. The interlaminar fracture behavior of unidirectional glass fiber reinforced composites with different fiber surface treatments has been investigated in mode I, mode II, and for the fixed mixed mode I/II ratio 1.33. Double cantilever beam (DCB), end notched flexure (ENF), and mixed mode flexure (MMF) specimens were used. The data obtained from these tests were analyzed by using different analytical approaches and the finite element method. For the fibers treated with the silane coupling agent, a value about 2.5 times higher of mode II interlaminar fracture toughness for crack initiation was obtained in comparison with the polyethylene sized composite. For the composite made from the industrial fibers, a value about 2 times higher was obtained. Because of extensive fiber bridging and pullout in the composites with poor fiber/matrix adhesion, the results of mode I and mixed mode I/II tests did not characterize the interphase quality. In order to determine the interphase quality, the mode II tests are recommended.  相似文献   

2.
The rectangular specimens with an edge crack were subjected to symmetric three‐point bending and asymmetric four‐point bending to determine the mode I and mode II fracture toughness of the walnut particle and coconut fiber‐reinforced biocomposite. Epoxy resin was used as matrix material and 10 wt% of coconut fiber and 20 wt% of walnut shell particle were used as reinforcing materials. The mode I and mode II fracture toughness and mechanical tests were conducted on a servo hydraulic universal testing machine and the results were analyzed and discussed. POLYM. COMPOS., 36:167–173, 2015. © 2014 Society of Plastics Engineers  相似文献   

3.
In this study, the temperature dependence of the mixed‐mode fracture toughness of the phenolic resin for friction materials is investigated. For pure mode I, the fracture toughness decreases as the temperature increases, and it increases again after showing its minimum value. For pure mode II, the fracture toughness shows a similar trend but has its minimum value at a higher temperature. The temperature dependence of the mixed‐mode fracture toughness varies depending on the mode mixity, which is attributed to the different sensitivity to the relaxation phenomenon. At room temperature, as the fracture toughness for pure mode I and II are almost the same, the fracture locus shows a circular arc. At elevated temperatures, the locus becomes smaller and noncircular. At high temperature, the fracture locus shows an elliptical arc, where the fracture toughness for pure mode II is smaller than that for mode I. An empirical fracture criterion based on the time‐temperature dependence of the resin is proposed, and the proposed method successfully predicts the fracture toughness under various conditions of the temperature, time, and mode mixity. The crack initiation angles, on the other hand, are almost consistent regardless of the temperature, which agree with the maximum hoop stress theory. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

4.
Carbon nanofillers with different surface functional groups and aspect ratios, including carboxyl carbon nanotubes, un-functionalized carbon nanofibers (CNFs), glycidyloxypropyl-trimethoxysilane carbon nanotubes (GPS-CNTs) and nanofibers were evaluated for their potential for increasing the interlaminar fracture toughness of an S2-glass fiber/epoxy composite. The fillers were added in the matrix of the fiber reinforced plies, in the resin interlayer between plies, or in both regions. Comparisons were made based on mode I and mode II interlaminar fracture toughness. For composites made with CNTs dispersed in the matrix, fracture toughness was largely unaffected except for a slight increase seen with long GPS-CNTs. However, adding a CNF or CNT modified resin interlayer significantly increased the fracture toughness, with the highest improvement over the baseline material achieved by adding long GPS-CNTs in the interlayer (79% and 91% for mode I and mode II onset toughness, respectively). Important material parameters identified for improving interlaminar fracture toughness are the nanofiller aspect ratio and concentration at the fracture plane. Based on microscopic evaluations of the fracture surfaces, a high density of high aspect ratio nanofillers causes the best entanglement between the filler and glass fibers and effectively obstructs interlaminar crack propagation.  相似文献   

5.
A computer controlled test procedure for evaluating mode I and mode II interlaminar fracture behavior was used in experiments with eight different resin matrix/graphite fiber composites. Four analytical methods for calculating fracture toughness were compared. These included an energy rate determination of the J-integral, a compliance calibration procedure, equations based on linear beam bending, and an Area method calculation. Methods that account for nonlinear material behavior, such as the J-integral, were needed for characterizing the systems with high fracture toughness. The ratio of mode II to mode I fracture toughness ranged from 1.5 to 8.0, depending on the material system. Finally, preliminary work with a technique for constant strain rate testing of mode I DCB specimens is presented.  相似文献   

6.
The combined effect of varying loading rate and test temperature on the mode II Interlaminar fracture properties of a carbon fiber reinforced phenolic resin has been investigated. End notch flexure tests at room temperature have shown that this composite offers a relatively modest value of GIIcNL at non‐linearity and that its interlaminar fracture toughness decreases with increasing loading rate. As the test temperature is increased, the quasistatic value of GIIcNL increases steadily and the reduction in GIIcNL with loading rate becomes less dramatic. At temperatures approaching the glass transition temperature of the phenolic matrix, the interlaminar fracture toughness of the composite begins to increase sharply with crosshead displacement rate. A more detailed understanding of the effect of varying the test conditions on the failure mechanisms occurring at the crack tip of these interlaminar fracture specimens has been achieved using the double end notch flexure (DENF) geometry.  相似文献   

7.
The use of interlaminar fracture tests to measure the delamination resistance of unidirectional composite laminates is now widespread. However, because of the frequent occurrence of fiber bridging and multiple cracking during the tests, it leads to artificially high values of delamination resistance, which will not represent the behavior of the laminates. Initiation fracture from the crack starter, on the other hand, does not involve bridging, and should be more representative of the delamination resistance of the composite laminates. Since there is some uncertainty involved in determining the initiation value of delamination resistance in mode I tests in the literature, a power law of the form GIC= A · Δ ab (where GIC is mode I interlaminar fracture toughness and Δ a is delamination growth) is presented in this paper to determine initiation value of mode I interlaminar fracture toughness. It is found that initiation values of the mode I interlaminar fracture toughness. GICini, can be defined as the GIC value at which 1 mm of delamination from the crack starter has occurred. Examples of initiation values determined by this method are given for both carbon fiber reinforced thermoplastic and thermosetting polymers.  相似文献   

8.
To investigate the effect of including carbon beads on the mechanical properties of epoxy resin, the fracture toughness of carbon bead‐filled epoxy was earlier evaluated using a CT (compact tension) specimens and Mode I fracture toughness was observed. Based on those results, in this study, the Mode II interlaminar fracture toughness of carbon bead filled epoxy/glass fiber hybrid composites was evaluated using end notch flexure (ENF) specimens. The hybrid composites showed increased Mode II interlaminar fracture toughness. The optimal bead volume fraction was around 15%.  相似文献   

9.
Model epoxy resin formulations were modified with defferent concentrations of liquid rubber and preformed crosslinked rubber particles and impregnated into unidirectional carbon fibers. The liquid rubber was used to increase the mode I fracture toughness of the interlayer toughened prepreg systems, which already have high mode II fracture properties. In this paper it is shown that the mode II fracture toughness is not sacrificed by the incorporatiom of carboxyl terminated butadiene acrylonitrile rubber (CTBN) in the matrices, while mode I fracture toughness can be increased by as much as 100%.  相似文献   

10.
《Polymer Composites》2017,38(2):217-226
Carbon fiber‐reinforced polymer (CFRP) composites were fabricated using ordinary and compaction setups (OS and CS, respectively) in the vacuum‐assisted resin‐transfer molding (VARTM) process. The mechanical properties and acoustic emission (AE) spectra of the CFRP composites were compared among fabricated samples. The CFRP plates with sequences of [+30/−30]6 were sectioned to make specimens for Mode I interlaminar fracture tests and three‐point bending tests. The difference between the material properties and AE characteristics of the OS and CS specimens were statistically compared using one‐way analysis of variance. The OS specimens had a thicker resin layer, a higher resin fraction, larger average fracture toughness, and AE energy corresponding to the Mode I fracture, whereas the CS specimens had more macro‐scale voids and higher bending strength. AE analysis showed that frequency bands in the interlaminar fracture tests corresponding to matrix‐related fracture were dominant for the OS specimens, whereas those corresponding to the mixed fracture mode of the fiber and matrix fracture were dominant for the CS specimens. In the bending tests, mixed fiber‐matrix fractures were dominant for the OS specimens, and fiber‐related fractures were dominant for the CS specimens. In conclusion, the compaction treatment diminished interlaminar fracture toughness, due to the enhanced formation of macro‐scale voids around the fiber bundles during the resin impregnation stage. However, the bending strength improved with an increased fiber volume fraction. POLYM. COMPOS., 38:217–226, 2017. © 2015 Society of Plastics Engineers  相似文献   

11.
The work describes the preparation and physical‐mechanical characterization of unidirectional CFRP panels manufactured by an electron beam curing technique. Delamination fracture toughness in Mode I and II is investigated in order to evaluate the influence of fiber–matrix adhesion strength, matrix toughness and matrix crosslinking density as determined by the radiation curing process. A matrix system comprising a DGEBA epoxy monomer and an initiator of cationic polymerization have been used, with one batch of resin mixed with a PES monomer in order to enhance matrix toughness. Curing was achieved with a pulsed 10 MeV Electron Beam accelerator. Thermally cured composite systems have also been manufactured and tested for comparison. Results from double cantilever beam and end notched flexure delamination tests have been analyzed and correlated with results from short beam shear, dynamic mechanical thermal analysis tests and SEM micrographs of delaminated surfaces. POLYM. COMPOS., 35:1529–1542, 2014. © 2013 Society of Plastics Engineers  相似文献   

12.
The combined effect of varying loading rate and test temperature on the mode II interlaminar fracture properties of AS4/carbon fiber reinforced PEEK has been investigated. End notch flexure tests have shown that this thermoplastic‐based composite system offers a very high value of interlaminar fracture toughness at room temperature. Increasing the test temperature leads to a reduction in the mode II interlaminar fracture toughness of the composite, with the value at 150°C being approximately one half of the room temperature value. In contrast, increasing the crosshead displacement rate has been shown to increase the value of GIIc by up to 25%. A more detailed understanding of the effect of varying temperature and loading rate on the failure mechanisms occurring at the crack tip of these interlaminar fracture specimens has been achieved using the double end notch flexure (DENF) geometry. Here, extensive plastic flow within the crack tip region was observed in all specimens. It is believed that the rate sensitivity of GIIc reflects the rate‐dependent characteristics of the thermoplastic resin.  相似文献   

13.
Mixed-Mode Fracture Toughness of Ceramic Materials   总被引:6,自引:0,他引:6  
An experimental technique whereby pure mode I, mode II, and combined mode I-mode II fracture toughness values of ceramic materials can be determined using four-point bend specimens containing sharp, through-thickness precracks is discussed. In this method, notched and fatigue-precracked specimens of brittle solids are subjected to combined mode I-mode II and pure mode II fracture under asymmetric four-point bend loading and to pure mode I under symmetric bend loading. A detailed finite element analysis of the test specimen is performed to obtain stress intensity factor calibrations for a wide range of loading states. The effectiveness of this method to provide reproducible combined mode I-mode II fracture toughness values is demonstrated with experimental results obtained for a polycrystalline Al2O3. Multiaxial fracture mechanics of the Al2O3 ceramic in combined modes I, II, and III are also described in conjunction with the recent experimental study of Suresh and Tschegg (1987). While the mode II fracture toughness of the alumina ceramic is comparable to the mode I fracture toughness K Ic, the mode III fracture initiation toughness is 2.3 times higher than K Ic. The predictions of fracture toughness and crack path based on various mixed-mode fracture theories are critically examined in the context of experimental observations, and possible effects of fracture abrasion on the apparent mixed-mode fracture resistance are highlighted. The significance and implications of the experimental methods used in this study are evaluated in the light of available techniques for multiaxial fracture testing of brittle solids.  相似文献   

14.
The effects of additives such as 2-undecyl-imidazole (C11Z) and chromium acetylacetonate (Cr(acac)3) were examined on the curing behavior and fracture toughness of tetraglycidyldiaminodiphenyl methane/diaminodiphenyl sulphone (TGDDM/DDS) epoxy resins and their composites. The C11Z additive alone reacted with TGDDM epoxy resins at about 127°C and increased the resin viscosity, resulting in an acceptable resin content for composite processing. Further addition of Cr(acac)3 to TGDDM/DDS/C11Z formulation increased the fracture toughness 5.7 times compared to the typical TGDDM/DDS/BF3MEA epoxy formulation used for the preparation of laminates. The interlaminar fracture toughness of the laminates prepared by TGDDM/DDS/C11Z/Cr(acac)3 formulation was only twice as much as that prepared by typical TGDDM/DDS/BF3MEA. This was due to the fiber bridging contribution to the interlaminar fracture toughness. Based on the experiment, this fiber bridging contribution was only dependent on the fiber content. Thus, the interlaminar fracture toughness is approximated by the sum of the fracture toughness of epoxy matrix and the estimated fiber bridging contribution.  相似文献   

15.
Low temperature cure cyanate ester resin systems were developed and modified with epoxy‐terminated butadiene acrylonitrile rubber (ETBN) and impregnated into woven glass fabric. Mode I and mode II interlaminar fracture toughness values of the cured laminates were evaluated as a function of rubber concentration. Mode I fracture toughness increased to almost twice that of the unmodified system, while mode II fracture toughness remained essentially unchanged. Composite samples were subjected to aging experiments in water and the absorption/desorption behavior was investigated as was the effect on thermal performance. The presence of rubber was found to reduce the rate of matrix deterioration but also caused a substantial increase in water uptake. It was found that although the addition of rubber to the matrices decreased the unconditioned (dry) Tg all specimens showed the same reduction in Tg, after equilibrium water absorption.  相似文献   

16.
In order to improve the adhesion property between the z‐pin and laminate, carbon fiber powder coating technique for z‐pins were developed. Four types of coating materials, 1 mm short chopped carbon fiber (CS), 50 mesh carbon fiber powder z‐pins (CF), 400 mesh carbon fiber powder (CP), and carbon nanotubes (CN), were coated on an impregnated fiber bundle before the curing of the resin of the z‐pins. The diameters of the four types of coated z‐pins were increased from 0.50 to 0.61 mm, 0.57 mm, 0.58 mm, and 0.54 mm, separately. To characterize the adhesion property of the z‐pin/laminate, single z‐pin pull‐out tests were conducted. The results indicated that carbon fiber powder coating could improve the interfacial adhesion property of the z‐pin/laminate effectively. The interfacial shear strength was increased around 1/3. CS, CF, and CP improved the mechanical interlock and bridging effect of the interface, while CN enhanced the adhesion effect of the reinforcing mode. To examine the interlaminar performance of the reinforced laminate, we also conducted double cantilever beam tests. It was found that the coated z‐pin, which was related to better interfacial adhesion property, corresponded to higher mode I interlaminar fracture toughness of z‐pinned laminates. POLYM. COMPOS., 37:3508–3515, 2016. © 2015 Society of Plastics Engineers  相似文献   

17.
In this article, the effect of silk fibroin nanofibers as a toughening agent of carbon fiber/fabric-reinforced epoxy composites is experimentally investigated. The composites showed up to 30% improvement in Mode II fracture toughness at 0.1 wt% of silk fibroin nanofibers content. The scanning electron microscopy observation revealed that the fracture surface of silk fibroin nanofibers modified carbon fiber/fabric-reinforced epoxy composites appearance of the broken fiber and the ductile-like matrix cracks showed a good adhesion between matrix resin and carbon fibers, which are reasons for the enhanced mode II interlaminar fracture toughness.  相似文献   

18.
ABSTRACT

In recent decades, flax fibre has become a popular natural resource as reinforcement in polymeric composites. However, the pure mode characterisation of flax fibre composites is rather limited. Furthermore, the mixed-mode delamination is not yet available. Nevertheless, delamination behaviour is important to be characterised as it is a major problem in composite laminates. This study examined the delamination behaviour of a woven flax/epoxy composite. Specimens were tested using mode I double cantilever beam, mode II end-notched flexure and mixed-mode I+II single leg bending tests. Results showed that the mode I, mode II and mixed-mode I+II fracture toughness were 363.23, 962.17 and 649.06?N?m?1, respectively. When the fracture toughness values were fitted using Benzeggagh–Kenane criterion, it was found that the best-fit material parameter η was attained at 0.88. This information is useful to estimate the variation of fracture toughness with the mode ratio. Finally, through scanning electron micrographs, it was noticed that fibre/matrix debonding was the major fracture mechanism in all loading modes. In conclusion, the findings from this study suggested that the composite was suitable to be used for structural applications under mixed-mode loading.  相似文献   

19.
Symmetric and unsymmetric double cantilever beam (DCB) specimens were tested and analyzed to assess the effect of (1) adherend thickness and (2) a predominantly mode I mixed mode loading on cyclic debond growth and static fracture toughness. The specimens were made of unidirectional composite (T300/5208) adherends bonded together with EC3445 structural adhesive. The thickness was 8, 16 or 24 plies. The experimental results indicated that the static fracture toughness increases and the cyclic debond growth rate decreases with increasing adherend thickness. This behavior was related to the length of the plastic zone ahead of the debond tip. For the symmetric DCB specimens, it was further found that displacement control tests resulted in higher debond growth rates than did load control tests. While the symmetric DCB tests always resulted in cohesive failures in the bondline, the unsymmetric DCB tests resulted in the debond growing into the thinner adherend and the damage progressing as delamination in that adherend. This behavior resulted in much lower fracture toughness and damage growth rates than found in the symmetric DCB tests.  相似文献   

20.
An experimental investigation has been carried out to study the influence of thermoplastic addition on the mechanical properties of woven carbon fiber/epoxy matrix composites. As toughening agent bisphenol‐A polysulfone, PSu, has been added to the epoxy matrix. Flexural tests haved been performed to characterize the mechanical behavior of unmodified and PSu‐modified bulk tetra‐ and bifunctional epoxy matrices and also for the corresponding woven carbon fiber, CF, composite materials. Three‐point notched flexural tests been used to investigate the influence of polysulfone addition in the mode‐I fracture properties of the bulk epoxy matrices, relating them to their microstructural features investigated by atomic force microscopy (AFM). The double‐cantilever bea (DCB) and the end‐notched flexural (ENF) tests have been applied to characterize the interlaminar fracture toughness of the corresponding composites. For composites, the flexural properties were simmilar independent of the funcetionality of the epoxy matrix and of the thermoplastic content. Nevertheless, PSu addition to the epoxy matrix celarly enhanced the ode‐I and II interlaminar fracture toughness of the corresponding composites, the immprovement being higher for the composites manufactured with the bifunctional epoxy matrix at every thermoplastic content because of the lower crosslink density of the epoxy matrix.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号