首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In large, slow, cross‐head marine diesel engines research has increasingly shown that the lubrication regime between piston rings and cylinder liner at top dead centre is of the boundary lubrication type due to the high gas pressure, low sliding speed, and high temperature. This means that the tribological properties of piston ring, cylinder liner, and cylinder lubricant in these types of engine under boundary lubrication conditions should be considered simultaneously when friction and wear between the piston ring and cylinder liner are studied. Until now there has been no standard method to evaluate boundary lubrication performance. There are a few traditional methods used in lubricant research, but their results are not correlated with service conditions. It is important to find a suitable method to evaluate the boundary lubrication performance of lubricants at the laboratory testing stage or before the engine testing stage. The important parameters, such as sliding speed, normal load, materials of the contacting pairs, and lubricant, need all to be controlled. In this paper a systematic experimental procedure, the ‘five times heating and cooling test’, is introduced to assess lubricant properties under boundary lubrication conditions. Most of the parameters mentioned above are controlled. The model contact, of pin‐on‐plate form, is made from the actual piston and liner materials used in a large‐bore, slow, cross‐head marine diesel engine. The temperature characteristics of different blends of lubricants are investigated under boundary lubrication conditions using a pin‐on‐plate reciprocating test rig. These blends of lubricants have the same additives but different base fluids; they nevertheless fulfil the physical and chemical requirements of a real marine diesel engine. The test temperature range is from room temperature to the working temperature of the top piston ring. The experiments show that there are different temperature—friction characteristics for lubricants with different bases and the same additive package and there are also different temperature—friction characteristics during heating up and cooling down for each blend. Single‐base lubricants have more promising temperature—friction characteristics than those of a blend of a high‐viscosity base and a low‐viscosity base at high temperature.  相似文献   

2.
An advanced liquid lubricant for heat engines has been developed and tested successfully in a prototype engine. The lubricant possesses superior oxidation stability and high temperature stability. With the advent of new engine designs, stability should be measured in terms of both the temperature and the time for which the lubricant is subjected to it. This lubricant is designed to provide friction and wear protection for three to five minutes at 425°C (800°F) at the ring zone and maintains stability at an oil sump temperature of 171°C. The lubricant has been evaluated by the Cummins Engine Company. Out of a field of several dozen lubricants, six lubricants were selected for a prototype 200 h endurance tests. The NIST lubricant was one of the two lubricants that successfully finished the endurance testing. This paper provides an overview of the key lubricant design considerations, including oxidation and thermal stability, volatility, and deposit control, the prototype engine test conditions and the results.  相似文献   

3.
In order to improve the tribological properties of Ni-based composites, novel adaptive Ni-based composites containing multiple lubricants were prepared via a mechanical alloying and hot-press sintering technique. The phase constituents and microstructure of the composites were characterized and the tribological properties were evaluated from room temperature to 700 °C. The results showed that the Ag2MoO4 phase decomposed and new phases of Mo2C, Ag, and MoO3 formed in the sintered composites, which can be attributed to the solid state reaction of silver molybdate lubricant during the sintering process. The wear test results indicated that the Ni-based composites containing graphite and silver molybdate lubricants exhibited superior tribological properties at ambient and high temperatures. Subsequently, the Raman results demonstrated that the composition of the tribo-layers on the worn surface of the Ni-based composites was varied with increasing temperature. Combined with the wear test results, it can be proposed that the improvement of tribological properties is due to the synergistic lubricating action of silver molybdate, iron oxide, and nickel oxide. Furthermore, Raman results of the composite containing silver molybdate and silver/molybdenum trioxide lubricants revealed that the silver molybdate lubricant can reproduce easily by the direct reaction between molybdenum trioxide and silver in the agglomerate state.  相似文献   

4.
《Wear》2002,252(3-4):300-305
It is now quite apparent that, in a two-stroke, cross-head marine diesel engine, the lubrication regime in the contact between piston ring and cylinder liner at the top dead centre (TDC) is of a boundary type. Therefore, the tribological performance of a system to simulate the real contact should be assessed under conditions closely resembling the operating engine environment. In the reality of engine operation, the lubricant is often contaminated by fuel and products of combustion, hence the need to study the temperature–friction characteristics of this actual lubricant under the conditions of boundary lubrication.In this paper, an oil taken from the drainage system of the engine was used. A five times heating and cooling test methodology was employed to assess tribological performance of a model contact lubricated with the actual oil. The model contact was formed by a pin sliding over a plate both made of materials used in two-stroke, cross-head marine diesel engines.Experiments showed that the general trend in temperature–friction characteristics of the used oil is similar to that of a new oil. However, the level of friction in the contact lubricated with an used oil is significantly higher than that for a new oil.  相似文献   

5.
为降低发动机润滑油消耗以及由此带来的排放,活塞环缸套系统一般处于贫油润滑状态,特别是顶环与缸套间的贫油状况更严重。贫油状态下,活塞环-缸套间润滑油膜在出口区破裂后很难再形成,同时在燃烧上止点附近的高边界压力下气体承载也难以忽略。因此,以某柴油机顶环-缸套系统为分析对象,基于平均雷诺方程和无再形成边界条件,分析贫油和高边界压力下顶环-缸套界面间的润滑、接触和气体承载问题。研究结果表明,贫油工况下,由于油膜破裂后没有再形成,高边界压力的影响显著,对高爆压强化机型来说顶环-缸套间的气体承载力甚至会大于油膜承载力和接触承载力。  相似文献   

6.
Conventional liquid lubricants being used in today's gas turbine engines will not be able to operate effectively in the hostile bearing environments expected in future turbine engines. The expected high operating temperatures (500–800°C) mandate new and innovative lubrication schemes to achieve success. Recent studies have demonstrated that a new class of solid lubricants, the complex chalcogenides or metal ocythiomolybdates, have good potential for high temperature lubrication. This paper describes the friction, wear and rolling contact endurance of three high-temperature bearing materials using a zinc oxythiomolybdate (ZnMoO2S2) powder lubricant. Rolling contact tests were conducted using VIM-VAR M50, micromelt T15 tool steels and silicon nitride (Si3N4) at temperatures ranging from 23°C to 649°C, using a modified ball-on-rod type rolling-contact fatigue tester. Significant improvements in friction, endurance and wear were observed at all test temperatures, and with all three materials evaluated, when ZnMoO2S2 was used as a lubricant. Overall, silicon nitride exhibited the best frictional and antiwear performance. The lubricant powder exhibited the best tribological performance with T15 and M50 specimens between 177°C and 316°C. Energy Dispersive X-Ray Analysis (EDAX) of wear tracks showed the presence of iron (Fe) on the Si3N4 specimens as well as the presence of zinc (Zn) on both the T15 and the M50 specimens.  相似文献   

7.
The performance and particulate emission of a diesel engine are affected by the consumption of lubricating oil.Most studies on oil consumption mechanism of the cylinder have been done by using the experimental method,however they are very costly.Therefore,it is very necessary to study oil consumption mechanism of the cylinder and obtain the accurate results by the calculation method.Firstly,four main modes of lubricating oil consumption in cylinder are analyzed and then the oil consumption rate under common working conditions are calculated for the four modes based on an engine.Then,the factors that affect the lubricating oil consumption such as working conditions,the second ring closed gap,the elastic force of the piston rings are also investigated for the four modes.The calculation results show that most of the lubricating oil is consumed by evaporation on the liner surface.Besides,there are three other findings:(1) The oil evaporation from the liner is determined by the working condition of an engine;(2) The increase of the ring closed gap reduces the oil blow through the top ring end gap but increases blow-by;(3) With the increase of the elastic force of the ring,both the left oil film thickness and the oil throw-off at the top ring decrease.The oil scraping of the piston top edge is consequently reduced while the friction loss between the rings and the liner increases.A neural network prediction model of the lubricating oil consumption in cylinder is established based on the BP neural network theory,and then the model is trained and validated.The main piston rings parameters which affect the oil consumption are optimized by using the BP neural network prediction model and the prediction accuracy of this BP neural network is within 8%,which is acceptable for normal engineering applications.The oil consumption is also measured experimentally.The relative errors of the calculated and experimental values are less than 10%,verifying the validity of the simulation results.Applying the established simulation model and the validated BP network model is able to generate numerical results with sufficient accuracy,which significantly reduces experimental work and provides guidance for the optimal design of the piston rings diesel engines.  相似文献   

8.
Ni-based self-lubricating composites with multiple-lubricants addition were prepared by a powder metallurgy technique, and the effect of multiple-lubricants on tribological properties was investigated from room temperature to 700?°C. The synergetic effects of graphite, MoS2, and metallic silver lubricants on the tribological characteristics of composites were analyzed. XRD analysis showed that new Cr x S y and Mo2C phase were formed in the composites containing graphite, MoS2 and metallic Ag lubricants during the sintering process. The average friction coefficients (0.69?C0.22) and wear rates (11.90?C0.09?×?10?5?mm3?N?1?m?1) were obtained when rubbing against Inconel 718 alloy from room temperature to 700?°C due to synergetic lubricating action of multiple-lubricants. A smooth lubricating was gradually generated on the worn surface, and the improving of tribological properties was attributed to the formation of lubricious glaze film on the worn surface and their partially transferred to the counterface. The graphite played the main role of lubrication at room temperature, while molybdate phase and graphite were responsible for low friction coefficients and wear rates at mid/high temperatures. The synergetic lubricating effect of molybdate (produced in the rubbing process at high temperatures) iron oxide (transfer from disk material to the pin) and remaining graphite multiple-lubricants play an important lubricating role during friction tests at a wide temperature range.  相似文献   

9.
Chen  Chun-I  Hsu  Stephen M. 《Tribology Letters》2003,14(2):83-90
The ability of a lubricant to protect increasingly complex diesel engines directly affects engine durability and warranty costs and is becoming increasingly costly to validate. This paper presents a novel approach combining a chemical kinetic model using rate constants determined by a set of laboratory bench tests and a finite-difference computer program to predict lubricant performance in a given diesel engine. The computer program takes into account the engine's mechanical design, such as temperature, pressure, oil flow rate, top ring zone volume, and other parameters. The chemical kinetic model incorporates the kinetic rate constants determined for that particular lubricant in a set of special bench-test procedures tailored to a particular engine and its operating conditions. The bench-test procedures take into account the necessary environment in that particular engine such as specific metal catalysis, oxidation conditions, and deposit formation. The computer program then combines the lubricant degradation model with the engine operating sequence to yield a predictive simulation. This approach is capable of predicting the amount of deposit in the top ring groove and the amount of oil consumption in that engine. The computer program models the engine as three chemical reactors in series. The three reactors are: the oil sump, the top piston ring groove, and the piston cylinder-liner interface. Oil flows from the sump to the piston rings and to the piston liner area. The oxidation process is described by a set of simplified chemical kinetic rate equations. The kinetic constants of the lubricant are determined by laboratory bench-test procedures using Differential Scanning Calorimetry (DSC), a Thermal Gravimetric Analyzer (TGA), and the Micro-Oxidation test apparatus. The design and the operating conditions of the engine define the chemical reaction conditions used in the simulation program such as the temperatures of the reactions, the residence time in a particular reactor, the volume of the reactors, and the operating sequence of the engine. The simulation program is validated by the Caterpillar 1K engine dynamometer test results. Two experimental high-temperature lubricants and three IK reference oils were used in this study. Good agreement between model simulation and 1K engine test results was obtained.  相似文献   

10.
The phase-out of CFC production and further regulations on HCFC are required because of their association with the depletion of stratospheric ozone. HFCs and their mixtures have evolved as long-term replacements for CFCs and HCFCs. For air conditioning and refrigeration systems, new synthetic lubricants having miscibility with HFC refrigerants, similar to that of mineral oils with CFCs, have been developed. Data on the miscibility ofR-32/125 and R-125/143a with polyol ester lubricants are presented in this paper. In the temperature range of interest (−40°C to 60°C), we observed the upper immiscible region, lower immiscible region, as well as the coalescence of the two regions, for polyol ester lubricants with these HFC refrigerant mixtures. HFC-143a is least miscible among the three pure HFC refrigerants. The stability of R-32/125 and R-125/143a with dry polyol ester lubricants is very good at 204° C. With high moisture content, hydrolysis of the lubricant occurs at high temperatures. The onset of significant hydrolysis of lubricant (B) takes place between 175°C and 200°C. Care must be exercised to maintain the dryness of polyol ester lubricants and refrigeration systems to prevent this occurring.  相似文献   

11.
A study has been made on the wear and friction of hardened AISI 1045 steel using a tri-pin-on-disc type of friction and wear apparatus. During the investigation the linear pin wear, coefficient of friction and rise in pin specimen temperature were monitored and wear and friction curves plotted. Wear surfaces and mechanisms were investigated by means of optical microscopy. Analysis of used lubricating oil was performed using FTIR spectroscopy.

It was shown that the wear rate, type of wear and friction coefficient were influenced by contaminating the lubricant with bio-fuel as well as the surface hardening treatment. Corrosive wear and pits on the specimen surface were found when plain bio-fuel was used as lubricating oil. The results also confirmed that better wear resistance was obtained from the surface-hardened steel specimen with 4 % bio-fuel-contaminated lubricant.

Results from this study will be useful in material selection for tribological components in diesel engines running on vegetable fuel.  相似文献   

12.
将普通CD40润滑油作为基础润滑油,在3种不同的载荷作用下,对含有金属陶瓷添加剂润滑油对汽缸套-活塞环摩擦磨损特性的影响进行了模拟试验研究,并与实际使用的普通CD40润滑油的试验结果进行了比较。研究结果表明,汽缸套-活塞环摩擦副在这种添加剂作用下,其磨损失重及摩擦因数都大幅度降低。摩擦副表面扫描电镜分析结果也表明,这种添加剂使摩擦表面更光滑,其本身具有表面自修复作用。  相似文献   

13.
The lubricating properties of two ionic liquids (ILs) with the same anion but different cations, one ammonium IL [C8H17]3NH.Tf2N and one imidazolium IL C10mim.Tf2N, were evaluated both in neat form and as oil additives. Experiments were conducted using a standardized reciprocating sliding test with a segment of a Cr-plated diesel engine piston ring against a gray cast iron flat specimen. The cast iron surface was prepared with simulated honing marks as on a typical internal combustion engine cylinder liner. The selected ILs were benchmarked against conventional hydrocarbon oils. Substantial friction and wear reductions, up to 55% and 34%, respectively, were achieved for the neat ILs compared to a fully formulated 15W40 engine oil. Adding 5 vol% ILs into mineral oil has demonstrated significant improvement in the lubricity. One blend even outperformed the 15W40 engine oil with 9% lower friction and 34% less wear. Lubrication regime modeling, worn surface morphology examination, and surface chemical analysis were conducted to help understand the lubricating mechanisms for ILs. Results suggest great potential for using ionic liquids as base lubricants or lubricant additives for diesel engine applications.  相似文献   

14.
采用往复振动机模拟小型二冲程发动机运转工况,实验研究汽油和甲醇为燃料时发动机气缸和活塞环间的摩擦特性,并比较分别使用润滑油新油、润滑油老化油、润滑油新油和老化油的混合油作为润滑油时气缸和活塞环间的摩擦特性。结果表明,以甲醇为燃料时的摩擦因数和磨损量均小于以汽油为燃料时的摩擦因数和磨损量,特别是使用添加了润滑油新油的燃料时的摩擦因数和磨损量最小。通过黏度和热重(TG)分析,探讨甲醇燃料改善气缸和活塞环间的摩擦特性的原因,结果表明,甲醇燃料具有较高的黏度和较低的摩擦因数,因而以甲醇为燃料时可以降低磨损  相似文献   

15.
Liang Fang  Yimin Gao  Songhua Si  Qingde Zhou 《Wear》1997,210(1-2):145-150
The tribological behavior of ceramic Al2O3 coupled with gray cast iron (PHT) with different lubricants was investigated using a ring-on-block wear tester. In the wear test, air, distilled water, emulsion and oil were used as lubricants respectively in order to check the lubricating effectiveness of lubricants and the friction mechanism of solid graphite in the cast iron. Wear testing of 0.8% C steel (T8) sliding with Al2O3 was also carried out to compare with the test using gray cast iron. From these data the tribological behavior of graphite in the iron can be evaluated. The results show that the friction and wear of tested couples are decreased using different lubricants in the following order: air, distilled water, emulsion and oil. When lubricating with air and water, graphite in the iron as solid lubricant can decrease the friction and wear of the couples. However, when lubricating with emulsion and oil, graphite does not show the advantage of decreasing friction and wear.  相似文献   

16.

The piston ring and liner of internal combustion engines are generally used under increasingly harsh conditions. To investigate the mechanisms affecting the work ineffective, the coupled heat transfer, lubrication and friction model between the piston ring and liner is proposed by coupling the gas, piston set-liner, lubrication film and coolant. In this model, the temperature variation of lubricant, the gas blowby, the surface roughness, the rupture position and the non-axial symmetry of oil film are considered. The coupled heat transfer, lubrication and friction simulation is carried out for 6110 diesel engine, and the temperature fields of piston set-liner along with the corresponding lubrication and friction curves are obtained. The simulated results are verified by comparing with the temperature experiment of piston.

  相似文献   

17.
Boron compounds are emerging as promising materials for a wide range of applications in automotive and industrial lubrication systems. Several studies conducted on boron compounds have revealed that they exhibit desirable properties for preparing stable and compatible lubricant components for a new generation of lubricating oil formulations. Boron‐containing lubricants have major tribological advantages, such as antiwear efficiency, good film strength, high‐temperature resistance, and self‐lubricating properties. The increasing number of patents concerning boron‐containing lubricants illustrates commercial interest in this area. Boron lubricants can be used in many forms, such as oxides, esters, and boric acid. Therefore, it can be expected that a new generation of lubricant formulations includes boron compounds. This paper presents an overview of various solid and liquid lubricants containing boron as an important ingredient, and is intended to aid the development of new lubricants.  相似文献   

18.
This paper studies the effect of surface modification of multiwall carbon nanotubes (MWCNTs) prior to dispersion in engine oil to improve the tribological properties. The MWCNTs are stabilised in the lubricant with two different surfactants cetrimonium bromide (CTAB) and sorbitan monooleate (SPAN 80) and the effect of surfactants on the tribological properties has been studied. Pristine and surface modified MWCNTs in weight per cent range of 0·5% are dispersed in CI4 plus diesel engine oil. The foaming tendency and other physico-chemical properties of test lubricant have been studied to investigate the effect of nano materials and surfactants. The anti-wear and anti-friction properties are tested on a four ball wear tester and the comparison is made to assess the relative performance of pristine MWCNTs over surface modified MWCNTs. A strong influence of the surface modification technique is found on lubricating and physico-chemical properties. Both CTAB and SPAN 80 could keep the MWCNTs stable in the lubricant without compromising the foaming tendency of lubricant and other physico-chemical properties. The friction and wear characteristics of lubricants have improved with the dispersion of surface modified MWCNTs while there is no improvement in the properties of lubricant dispersed with pristine MWCNTs.  相似文献   

19.
More durable, low-friction bearing materials over a wide temperature range are needed for turbine components and other high-temperature bearing applications. The current study reported the tribological properties of TiAl matrix self-lubricating composites (TMC) containing MoS2 (a low-temperature lubricant, below 500°C), hBN (a medium-temperature lubricant, below 600°C), and Ti3SiC2 (a high-temperature lubricant, above 600°C) designated as MhT against an Si3N4 counterface at temperatures ranging from 25 to 800°C in air. The load was 10 N and the sliding speed was 0.2 m/s for all tests. Tribological studies indicated that TMC containing MhT showed a lower friction coefficient and wear rate in comparison to TiAl-based alloy at all test temperatures, which was attributed to the excellent synergetic lubricating effect of MoS2, hBN, and Ti3SiC2. TMC containing 5 wt% MhT exhibited the best tribological properties over a wide temperature range.  相似文献   

20.
An investigation is conducted on the unexplored synergistic effects of multilayer graphene (MLG) and Ti3SiC2 in self-lubricating composites for use in high-temperature friction and wear applications. The tribological properties of TiAl matrix self-lubricating composites with different solid lubricant additions (Ti3SiC2-MLG, MLG) are investigated from room temperature to 800°C using a rotating ball-on-disk configuration. Tribological results suggest the evolution of lubrication properties of MLG and the excellent synergistic lubricating effect of MLG and Ti3SiC2 as the testing temperature changes. It can be deduced that MLG has great potential applications as a promising high-temperature solid lubricant within 400°C, and a combination of MLG and Ti3SiC2 is an effective way to achieve and maintain desired tribological properties over a wide temperature range.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号