首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
采用差示扫描量热仪对玻璃纤维(GF)增强聚酰胺66(PA66)复合材料进行了非等温结晶研究;用莫志深法和Kissinger法计算并得到了非等温结晶动力学参数。结果表明,GF对PA66基体具有异相成核作用,可提高其结晶速率;当GF含量为30 %(质量分数,下同)时,复合材料的结晶速率最大;在相同时间内,复合材料的结晶度越大,其所需的降温速率越大;PA66、PA66/15 %GF、PA66/30 %GF、PA66/45 %GF的结晶活化能分别为-297.22、-356.32、-481.00、-365.59 kJ/mol。  相似文献   

2.
Nonisothermal crystallization kinetics of pure polypropylene and polypropylene/down feather fiber composites were investigated using a differential scanning calorimeter at five different cooling rates. The experimental data on crystallinity versus temperature were analyzed by Avrami, Ozawa, and Liu models, respectively. The results indicated that the presence of down feather fiber served as nucleating agent and increased the onset and peak temperatures of crystallization of polypropylene/down feather fiber composites. Interestingly, polypropylene/down feather fiber composites showed a slower primary crystallization and a faster secondary crystallization than pure PP, meaning that down feather fiber retired the crystallizaiton process of PP matrix. The nucleation activity and activation energies were also calculated and agreed well with these results. Wide‐Angle X‐ray diffraction patterns indicated that down feather fiber induced the formation of β‐monoclinic crystals in polypropylene matrix. These phenomena were definitely different from the nonisothermal crystallization kinetics of polypropylene composite based on inorganic particles and organic cellulose fibers. POLYM. COMPOS., 37:3103–3112, 2016. © 2015 Society of Plastics Engineers  相似文献   

3.
The crystalline structure, morphology, and nonisothermal crystallization behavior of isotactic polypropylene (iPP) with and without a novel rare earth‐containing β‐nucleating agent (WBG) were investigated with wide‐angle X‐ray diffraction, polar optical microscopy, and differential scanning calorimetry. WBG could induce the formation of the β form, and a higher proportion of the β form could be obtained by the combined effect of the optimum WBG concentration and a lower cooling rate. The content of the β form could reach more than 0.90 in a 0.08 wt % WBG nucleated sample at cooling rates lower than 5°C/min. Polar optical microscopy showed that WBG led to substantial changes in both the morphological development and crystallization process of iPP. At all the studied cooling rates, the temperature at which the maximum rate of crystallization occurred was increased by 8–11°C in the presence of the nucleating agent. An analysis of the nonisothermal crystallization kinetics also revealed that the introduction of WBG significantly shortened both the apparent incubation period for crystallization and the overall crystallization time. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

4.
The isothermal and nonisothermal crystallization kinetics of nonnucleated and nucleated isotactic polypropylene (iPP) were investigated by DSC and a polarized light microscope with a hot stage. Dibenzylidene sorbitol (DBS) was used as a nucleating agent. It was found that the crystallization rate increased with the addition of DBS. The influence of DBS on fold surface energy, σe, was examined by the Hoffman and Lauritzen nucleation theory. It showed that σe decreased with the addition of DBS, suggesting that DBS is an effective nucleating agent for iPP. Ozawa's theory was used to study the nonisothermal crystallization. It was found that the crystallization temperature for the nucleated iPP was higher than that for nonnucleated iPP. The addition of DBS reduced the Ozawa exponent, suggesting a change in spherulite morphology. The cooling crystallization function has a negative exponent on the crystallization temperature. © 1998 John Wiley & Sons, Inc. J Appl Polym Sci 69: 2089–2095, 1998  相似文献   

5.
Nonisothermal crystallization behavior of model ecocomposites based on polypropylene (PP), maleic anhydride modified polypropylene (PPm), and kenaf fibers were extensively studied. Melting and crystallization behavior of the composites with 20 wt/wt% kenaf fibers were analyzed by differential scanning calorimetry (DSC) in dynamic regime (with heating rate of 10 K/min, and cooling rates of 5, 10, 15, 20, and 40 K/min). It was shown that the kenaf fiber surface acts as a nucleating agent during nonisothermal crystallization of both PP matrices, shifting the onset and peak crystallization temperatures toward higher values. Crystallization behavior was analyzed by Avrami, Jeziorny, Ozawa, Mo, and Kissinger methods. The results confirmed the applicability of the used models, with exception of the Ozawa approach that was rather inapplicable for these composites. POLYM. ENG. SCI., 47:745–749, 2007. © 2007 Society of Plastics Engineers.  相似文献   

6.
HF Shi  Y Zhao  X Dong  CC He  DJ Wang  DF Xu 《Polymer International》2004,53(11):1672-1676
In this paper, the isothermal crystallization of nylon 6 in the presence of Kevlar 129 fiber was investigated by polarized optical microscopy (POM). The formation of a transcrystalline domain was found to be mainly controlled by crystallization conditions, such as the temperature of the isothermal crystallization, residual time at melting temperature and the cooling rate of the melt. The nucleation rate of nylon 6 on the fibers was mainly affected by the crystallization temperature. The interfacial transcrystallinity of nylon 6 occurred on the surface of Kevlar 129 fiber in the temperature range 130–190 °C. The reason for the formation of interfacial transcrystalline morphology is discussed from the molecular level, based on the understanding of the packing mode of nylon 6 chains around fibers and the interaction between matrix and fibers. It was found that the lattice matching and hydrogen‐bonding between nylon 6 and poly(p‐phenylene terephthalamide) (PPTA) crystals play an important role in the epitaxial crystallization. Copyright © 2004 Society of Chemical Industry  相似文献   

7.
MCPA6/纳米TiO2原位复合材料的熔融行为   总被引:1,自引:0,他引:1  
采用差示扫描量热法(DSC)研究了铸型尼龙6(MCPA6)及其纳米TiO2原位复合材料的等温结晶与非等温结晶晶体的熔融行为。结果表明:MCPA6/纳米TiO2原位复合材料等温结晶晶体的熔融行为呈现三重熔融峰,非等温结晶晶体的熔融行为呈现二重熔融峰;其高温熔融峰温随等温结晶温度或降温速率的变化基本不变,而低温熔融峰温则随等温结晶温度的升高或降温速率的减小而提高;纳米TiO2的加入对MCPA6有一定的成核作用,使其熔点提高。  相似文献   

8.
This article deals with the crystallization behaviors of original (prepared in a torque rheometer), DSC crystallization and mold crystallization (quenching and slow nonisothermal crystallization) of isotactic polypropylene (iPP) mixed with β‐form nucleating agent. The microstructure and thermal stability of these samples were investigated. The wide angle X‐ray diffraction (WAXD) results indicate that fast cooling is favorable for β‐form iPP formation. With slower cooling rate and higher concentration of nucleating agent, the lamellar thickness and stability of crystal0s were enhanced. Polarized optical microscopy (POM) and scanning electron microscopy (SEM) both showed that rapid crystallized samples gave rise to tiny spherulites, whereas under slow crystallization condition, nucleated samples could be fully developed in the form of dendritic or transcrystalline structures, depending on the nucleating agent concentration. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

9.
The crystallization behaviors and crystalline morphologies of initial and chain‐extended nylon 66 samples were studied with differential scanning calorimetry and polarizing microscopy, respectively. The crystallization rate increased and the size of the spherulites decreased with chain‐extension. In addition, a two‐peak behavior was observed in chain‐extended nylon 66. These results showed that for the chain‐extended nylon 66, there was heterogeneous nucleation during crystallization. Therefore, the chain extender possibly functioned as a nucleating agent at the same time. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 91: 68–71, 2004  相似文献   

10.
Bio-sourced nylon 69,one of promising engineering plastics,has a great potential in developing sustainable technology and various commercial applications.Isothermal and nonisothermal crystallization kinetics of nylon 69 is a base to optimize the process conditions and establish the structure–property correlations for nylon 69,and it is also highly bene ficial for successful applications of nylon products in industry.Isothermal and nonisothermal crystallization kinetics has been investigated by differential scanning calorimetry for nylon 69,bio-sourced even–odd nylon.The isothermal crystallization kinetics has been analyzed by the Avrami equation,the calculated Avrami exponent at various crystallization temperatures falls into the range of 2.28 and 2.86.In addition,the Avrami equation modi fied by Jeziorny and the equation suggested by Mo have been adopted to study the nonisothermal crystallization.The activation energies for isothermal and nonisothermal crystallization have also been determined.The study demonstrates that the crystallization model of nylon 69 might be a twodimensional(circular)growth at both isothermal and nonisothermal crystallization conditions.Furthermore,the value of the crystallization rate parameter(K)decreases signi ficantly but the crystallization half-time(t1/2)increases with the increase of the isothermal crystallization temperature.To nonisothermal crystallization,the crystallization rate increases as the cooling rate increases according to the analysis of Jeziorny's theory.The results of Mo's theory suggest that a faster cooling rate is required to reach a higher relative degree of crystallinity in a unit of time,and crystallization rate decreases when the relative degree of crystallinity increases at nonisothermal crystallization conditions.  相似文献   

11.
The nonisothermal melt‐crystallization behavior of PA6 and EBA blends at varying EBA content was investigated using differential scanning calorimetry at different scanning rates. Several macrokinetic models such as Avrami, Jeziorny, Ozawa, Liu, Ziabicki, and Tobin were applied to analyze the crystallization behavior thoroughly under nonisothermal conditions. The Avrami and Tobin model predicted that, for pure PA6 and PA6/EBA blends, simultaneous growth of all forms of crystal structures such as fibrillar, disc‐like, and spherulitic proceeds at an increasing nucleation rate. However, when applied to blends for isothermal crystallization, the Avrami model predicted that the crystallization process is diffusion‐controlled for pure PA6 and PA6/EBA blend containing higher content of EBA (50 phr), where the nylon‐6 chains were able to diffuse freely to crystallize under isothermal conditions. Liu model predicted that, at unit crystallization time, a higher cooling rate should be used to obtain a higher degree of crystallinity for both PA6 and PA6/EBA blends. The kinetic crystallizability of PA6 in the blends calculated using Ziabicki's approach varies depending upon the nucleation density and PA6‐rich regions present in the blend compositions. Nucleation activity of the blends estimated by Dobreva and Gutzowa method reveals that the EBA particles are inert at lower concentrations of EBA and do not act as nucleating agent for PA6 molecules in the blends. The activation energy of nonisothermal crystallization, calculated using Augis–Bennett, Kissinger, and Takhor methods indicated that the activation energy is slightly lower for the blends when compared to the neat PA6. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

12.
Summary The effect of cure on the crystallization rates of polyphenylene sulfide (PPS) and PPS/carbon fiber composites has been studied by differential scanning calorimetry (DSC). The crystallization rate of PPS increased with increasing degree of cure. The carbon fiber acted as a nucleating agent to enhance the crystallization rate of PPS. The fully cured PPS seemed to be saturated with nucleating sites formed through the cure reaction. Therefore, the presence of carbon fibers gave little effect on the crystallization rate of the fully cured PPS.  相似文献   

13.
Poly(lactide), a bio‐based aliphatic polyester, is a subject to large research effort. One point of optimization is the acceleration of its crystallization kinetics to promote crystallinity under nonisothermal polymer processing conditions by means of compounding with nucleating agents and plasticizers. The nonisothermal crystallization kinetics of neat and formulated poly(L,D ‐lactide) (PDLLA) from the melt with talc and polyethylene glycol (PEG) or acetyl tributyl citrate (ATBC) were studied with the help of the Avrami–Jeziorny and Liu–Mo analysis. Talc showed to be a moderately efficient nucleating agent, as it causes only small increase of crystallization kinetics and shows no effect on the crystallization activation energy. A synergistic effect with plasticizers was observed, expanding the crystallization window significantly. PEG was found to be a more efficient plasticizer than ATBC but causes large decrease in the molecular weight average of PDLLA upon thermal treatment. The talc/ATBC system is efficient starting with an ATBC concentration of 9 wt%. The acceleration observed was a crystallization half‐time decrease of 30% compared to neat PLA and reaching maximum crystallization enthalpies even at cooling rate of 25°C min?1. The ATBC/talc system can be recommended as an efficient system for acceleration of nonisothermal crystallization kinetics of PDLLA. POLYM. ENG. SCI., 2013. © 2012 Society of Plastics Engineers  相似文献   

14.
Polypropylene (PP)/CaCO3 nanocomposites were prepared by melt-blending method using a Haake-90 mixer. The CaCO3 nanoparticles were surface modified with a coupling agent before compounding. A fine dispersion of the modified nanoparticles in the nanocomposites was observed by transmission electron microscopy (TEM). Effects of surface treatment of CaCO3 nanoparticles on the nonisothermal crystallization behavior and kinetics of PP/CaCO3 nanocomposites were investigated by differential scanning calorimetry (DSC). Jeziorny and Mo methods were used to describe the nonisothermal crystallization process. It was shown that the crystallization temperature of the nanocomposites increased due to the heterogeneous nucleation of the surface-treated nanoparticles. It was found that the nanoparticles modified with a proper content range of coupling agent could facilitate the nonisothermal crystallization of the nanocomposites under certain conditions (the cooling rate and the relative degree of crystallinity). This may be a potential application for the crystallization controlling of composites in manufacturing. In addition, the activation energy of crystallization for the nanocomposites and the nucleation activity of the nanoparticle were estimated by using Kissinger and Dobreva's methods, respectively. It could be concluded that the surface-treated nanoparticles had a strong nucleating activity, which caused the decrease of the activation energy of the nanocomposites.  相似文献   

15.
The nonisothermal crystallization of Isotactic polypropylene (iPP) containing different concentration of nucleating agent potassium dehydroabietate (DHAA‐K) or sodium dehydroabietate (DHAA‐Na) at the cooling rate of 10°C/min was investigated using differential scanning calorimetry (DSC) together with Jeziorny's method. It was found that the temperature at which the maximum rate of crystallization occurred shifted to a higher region by about 13.7–16.9°C, and the rate of crystallization became faster for iPP with DHAA‐K (PPK) or DHAA‐Na (PPNa) in comparison to the virgin iPP. Avrami exponent for virgin PP, PPK, and PPNa was about 3.1, 2.2, and 2.2, respectively, suggesting the change of the crystal growth mechanism of iPP with the addition of the nucleating agents. The morphology of iPP with and without nucleating agent examined by a cross polarized light microscope indicated that the size of spherulites marginally decreased, which then remained stable with the increase of the concentration of DHAA‐K or DHAA‐Na. The measurements of the optical and mechanical properties of iPP showed that the transparency, gloss, and flexural modulus increased with increasing nucleating agent before its optimal concentration. POLYM. ENG. SCI., 47:889–897, 2007. © 2007 Society of Plastics Engineers  相似文献   

16.
The fatigue behavior of long fiber reinforced nylon 66 has been investigated by measuring fatigue crack propagation rates of injection molded samples. Plaques varying in thickness from 3 to 10 mm were employed for nylong 66 containing either glass, carbon or aramid fibers. Both conventional chopped, short fiber reinforcements and pultruded long fiber filled nylon 66 were examined. Long fiber reinforced nylon 66 exhibits improved fatigue resistance as shown by decreases in fatigue crack propagation rates compared to short fiber filled composites. Using a fracture mechanics analysis, it is shown that the improvements are due primarily to the higher moduli of the long fiber reinforced nylon 66, with only a slight increase in the calculated strain energy release rate associated with fatigue crack growth. For short or long glass fibers, and for short carbon fibers, the effects of fiber orientation on fatigue crack growth rates can be predicted from the fracture mechanics model. More significant effects of fiber length on fatigue fracture energies are noted for long aramid and long carbon reinforced nylon 66. It is also shown that thicker plaques can exhibit poorer fatigue fracture behavior owing to their inferior core sections.  相似文献   

17.
The crystallization kinetics and melting behavior of nylon 10,10 in neat nylon 10,10 and in nylon 10,10–montmorillonite (MMT) nanocomposites were systematically investigated by differential scanning calorimetry. The crystallization kinetics results show that the addition of MMT facilitated the crystallization of nylon 10,10 as a heterophase nucleating agent; however, when the content of MMT was high, the physical hindrance of MMT layers to the motion of nylon 10,10 chains retarded the crystallization of nylon 10,10, which was also confirmed by polarized optical microscopy. However, both nylon 10,10 and nylon 10,10–MMT nanocomposites exhibited multiple melting behavior under isothermal and nonisothermal crystallization conditions. The temperature of the lower melting peak (peak I) was independent of MMT content and almost remained constant; however, the temperature of the highest melting peak (peak II) decreased with increasing MMT content due to the physical hindrance of MMT layers to the motion of nylon 10,10 chains. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 2181–2188, 2003  相似文献   

18.
筛选了4种尼龙(PA)66用内脱模剂,研究了脱模剂与PA66的粘附作用,以及对PA66脱模性、力学性能、流变性能和结晶性的影响。结果表明,脱模剂使PA66注射成型制品的最佳成型周期缩短、成品率提高、表面光洁,并且提高了PA66的流动性和力学性能。其中脱模剂S101还兼有成核剂的作用,使PA66的结晶速率加快。  相似文献   

19.
运用DSC手段研究了UHMWPP/UHMWPE合金纤维的等温结晶行为,对所得的实验数据用修正Avrami方程的Jeziorny法进行处理,发现随冷却速率的提高,半结晶的时间t1/2缩短,表明冷却速率加快时,结晶速率也随之加快,纯UHMWPP主要是以三维球晶的方式进行结晶生长,UHMWPE的加入起到核剂的作用,随着成核剂含量的增加,UHMWPP的结晶维数将降低.  相似文献   

20.
A nanoscaled zinc citrate complex (ZnCC) was synthesized by the reaction of zinc acetate and citric acid using solution method. As a new eco-friendly nucleating agent, ZnCC was introduced into poly(l-lactic acid) (PLLA) via melt blending. The nonisothermal and isothermal crystallization, melting behavior, crystalline morphology and mechanical properties of the PLLA/ZnCC blends were investigated. It is found that ZnCC exhibits much more prominent nucleation activity on the crystallization of PLLA than conventional nucleating agent talc and commercial zinc citrate (ZnCit). By loading 0.05 wt% ZnCC, PLLA can complete crystallization upon cooling at 10 °C/min, and the crystallization peak shifts to a higher temperature with increasing ZnCC content. In the case of isothermal crystallization from the melt, the addition of ZnCC leads to a shorter crystallization time and a faster overall crystallization rate. Besides, the nucleation density of PLLA increases and the spherulite size decreases significantly in the presence of ZnCC. Epitaxy is the possible mechanism to elucidate the nucleation phenomenon of PLLA/ZnCC system. The tensile results show that ZnCC has a plasticization effect on the amorphous PLLA. Through a short-time annealing procedure, the mechanical properties such as tensile modulus and storage modulus of PLLA are improved by the addition of ZnCC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号