首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Epoxy and unsaturated polyester resins reinforced with random-planar orientation of short glass fibers were prepared and the temperature dependence of their tensile strength was studied. The tensile strength decreases as the temperature increases, and this tendency can be expressed in terms of critical fiber length lc and apparent interfacial shear strength τ: where σcs is the tensile strength of composite reinforced with random-planar orientation of short fibers, L is the fiber length, d is the fiber diameter, σf is the tensile strength of fiber, σm is the tensile strength of matrix, uf is the volume fraction of fiber, vm is the volume fraction of matrix, and σ′m is the stress of the matrix at fracture strain of the composite. The experimental strength values at room temperature are considerably smaller than the theoretical values, and this difference can be explained by the thermal stress produced during molding due to the large difference in the thermal expansion coefficient between glass fiber and matrix resin.  相似文献   

2.
The effect of internal stresses on the cohesion and adhesion of a thin silicon oxide (SiOx) oxygen-barrier coating, evaporated on a poly(ethylene terephthalate) (PET) film substrate was studied. Internal stresses were generated during annealing in the temperature range for recrystallization of the PET,during calendering in a multilayer structure where two SiOx /PET films were laminated together with a polypropylene film, and during long-term thermal aging below the glass transition temperature of the polymer. The cohesion of the coating and its adhesion to the polymer substrate were derived from fragmentation tests, in which the failure of the oxide coating was analyzed as a function of the applied stress during uniaxial tensile loading of the substrate. The intrinsic coating strength at critical length and the interfacial shear strength were found to be equal to 1350 MPa and 73 MPa, respectively. It was found that none of the thermal treatments investigated altered the interfacial interactions. Rather, these treatments induced shrinkage of the PET substrate, which increased the coating internal compressive stress and the SiOx /PET interfacial shear strength. A linear relationship between the SiOx /PET interfacial shear strength and the coating internal stress was determined from a stress transfer analysis. The coefficient of this linear relationship, equal to-1.34 · h c/l c, where h c is coating thickness and l c is the critical stress transfer length, reproduces the experimental data with good accuracy.  相似文献   

3.
In discontinuous fiber-reinforced composites, the critical fiber length plays an essential role in determining the mechanical properties. A method was devised to accurately determine the critical fiber length and the temperature dependence of the critical fiber length was studied for glass fiberepoxy and glass fiber-unsaturated polyester resin composites. If a continuous glass fiber is embedded in the matrix and the system is subjected to a tensile strain greater than the fiber ultimate tensile strain, the fiber breaks into many pieces. If the average length of these broken pieces (l?) is measured, the critical fiber length (lc) is expressed as lc = 4/3l?. The critical fiber length greatly increases with increasing temperature and the apparent shear strength at the interface, calculated from the critical fiber length, decreases linearly with increasing temperature.  相似文献   

4.
The thermomechanical stability of a number of organosilane surface treatments for glass fibers was evaluated for use in a fiber reinforced epoxy resin. All of the silane coatings were found to improve the tensile strength of E-glass filaments, particularly at large gauge lengths. A phenylamino silane and an amino silane were particularly effective in this regard. The fiber/matrix interface was evaluated as a function of temperature and after exposure to boiling water using a single-fiber composite test. All silane coatings transmitted a higher interfacial shear stress than obtained in composites with no coatings, and in all cases the shear stress transmission was considerably higher than would be expected from the yield properties of the resin. Measurements of the glass transition temperature of the epoxy resin, as well as Fourier-Transform Infra-Red analysis, indicated modification of resin properties in a zone around the glass fibers. Each of the silane coatings provided more stable thermomechanical properties than those obtained with uncoated glass, at least until the silanes were irreversibly degraded by boiling water. A phenylamino silane provided the most thermally stable properties. Finally, unidirectional E-glass fiber reinforced laminae were fabricated and the measured values of longitudinal strength were compared favorably to theoretical predictions.  相似文献   

5.
Studies on tensile strength of polybutadiene (BR) and ethylene–propylene diene rubber (EPDM) having a wide range of flaw sizes have been carried out under both normal and aging conditions. A similar study has been done for a solid propellant rocket insulator compound, based on EPDM. The morphology of tensile fracture surface has also been reported in each case in order to understand the mechanism of rupture. Unlike NR, EPDM, and BR gum vulcanizates, both unaged and aged, show no critical cut length (lc). lc may be defined as the cut length at which the strength decreases abruptly (sometimes there is a drop of a factor of 3 or more, at lc). However, the insulator compound, based on EPDM, exhibits a definite lc in the region of 1.5–1.7 mm. This arises because of anisotropic effect of asbestos fibers. Scanning electron microscopic studies show that the mechanisms of rupture of EPDM and BR gum vulcanizates are similar throughout the whole range of precuts. It occurs through a tearing process originated from the given precut at the center of the samples. A quantitative relation between tensile strength and distance between crack lines/tear lines has also been found. Though insulator compound shows a definite lc, similar fracture surface has been observed over the entire range of flaw sizes.  相似文献   

6.
The effect of various silane coupling agents on glass fiber surfaces has been studied in terms of the surface energetics of fibers and the mechanical interfacial properties of composites. γ-Methacryloxypropyltrimethoxysilane (MPS), γ-aminopropyltriethoxysilane (APS), and γ-glycidoxypropyltrimethoxysilane (GPS) were used for the surface treatment of glass fibers. From contact angle measurements based on the wicking rate of a test liquid, it was observed that silane treatment of glass fiber led to an increase in the surface free energy, mainly due to the increase of its specific (or polar) component. Also, for the glass fiber-reinforced unsaturated polyester matrix system, a constant linear relationship was observed in both the interlaminar shear strength (ILSS) and the critical stress intensity factor (KIC) with the specific component, γS SP, of the surface free energy. This shows that the hydrogen bonding, which is one of the specific components of the surface free energy, between the glass fibers and coupling agents plays an important role in improving the degree of adhesion at the interfaces of composites.  相似文献   

7.
Polyaniline (PANI) was covered on the surface of ultra-short glass fibers uniformly by in situ polymerization of aniline. Epoxy coatings with different contents of PANI ultra-short glass fibers and ultra-short glass fibers were formulated and their protection abilities were evaluated by means of open-circuit potential, electrochemical impedance spectroscopy and salt spray test. The results showed that the PANI ultra-short glass fibers had a significant inhibitive effect and its best volume fraction was10% in epoxy coating. XPS results indicated that a dense, stable passive oxide film of Fe2O3/Fe3O4 was formed on the steel surface beneath the coating.  相似文献   

8.
The influence of silane‐coated short glass fibers (SGF) on the mechanical and wear characteristics of nylon 66 composites was investigated by compounding nylon 66 with 35% SGF as well as with 2% molybdenum disulfide (MoS2) and without MoS2 in a co‐rotating twin screw extruder. Thus the resultant material was evaluated for physico‐mechanical, thermal, sliding wear, and morphological characteristics. It was found that the addition of glass fibers as well as MoS2 has significantly improved the tensile strength, tensile modulus, and impact strength of the nylon 66. Differential scanning calorimetry analysis reveals significant changes in the crystallization behavior of nylon 66 for incorporation of fillers. Thermal stability of the nylon 66 was found to be improved as revealed by the thermogravimetric analysis results. Dynamic mechanical analysis results show drastic improvement in the storage modulus of the nylon 66 both in the glassy region as well as in the rubbery region. Wear analysis shows that the incorporation of glass fibers and MoS2 filler has reduced the wear loss and specific wear rate of nylon 66. Worn surfaces were examined with scanning electron microscopy to have better insight of the wear mechanism. POLYM. COMPOS., 2012. © 2012 Society of Plastics Engineers  相似文献   

9.
Interfacial polymerization to polyamide 6, 6 followed by introduction of ionic groups was performed on the surface of short glass fibers. The ionic interphase-modified fibers were used with poly(ethylene-co-methacrylic acid) (DuPont Surlyn) to prepare composites with specific fiber-matrix interactions. Fiber treatment increased composite tensile and bending properties. An increase in the average fiber length was observed, which was attributed to a decrease in the fiber attrition during mixing. The effect of increasing temperature on the composite mechanical properties was studied. Different behavior was observed before and after the glass transition temperature, Tg, of the matrix. The dynamic mechanical measurements showed an increase in the Tg of the matrix after the treatments, which is attributed to a decrease in chain mobility at the interface resulting from increased interactions of the treated fiber surface with the polymer. Scanning electron microscopy of fractured composites after tensile tests revealed a smooth fiber surface with no polymer at the surface for the untreated composites. Adhered polymer was clearly observed on the surface of treated fibers, indicating better fiber wetting by the matrix. This improved adhesion was attributed to the grafted nylon molecules at the glass fiber surface.  相似文献   

10.
Aramid fibers have excellent mechanical properties as the main reinforcing filler in high-performance composites. However, the adhesion properties between fibers and most polymer matrices were poor. In this study, aramid fiber (AF) was modified by KH550 through surface coating based on the treatment with CaCl2 solution. The new surface treated with complexing agents could act as an active platform for secondary reactions for further modification. The surface morphology and composition of the treated aramid fibers were tested by scanning electron spectroscopy and X-ray photoelectron spectroscopy, the interlaminar shear strength and the tensile strength of aramid fiber-reinforced polymer (AFRP) of were evaluated. The results showed that the silane coupling agent KH550 was successfully grafted onto the surface of aramid fibers after treatment with CaCl2. Interlayer shear strength is greatly improved and the tensile strength of AFRP through further grafting with KH550 on the surface treated with CaCl2 was improved by 48.7%, compared with untreated aramid fiber. In the current scenario, this study is of immense importance because it validates the possibility of secondary modification after fiber complexation modification and useful modification methods, and provides a new direction for the modification of AF.  相似文献   

11.
The effect of aramid, glass and cellulose short fibers on the processing behavior, crosslinking density and mechanical properties of natural rubber (NR), ethylene‐propylene‐diene terpolymer rubber (EPDM) and styrene‐butadiene rubber (SBR) has been investigated. Two fiber percentages (10 and 20 phr) were added to the rubber. The results have shown that the above‐mentioned fibers, especially aramid fibers, are effective reinforcing agents for these rubbers, giving rise to a significant increase in mechanical properties, such as tensile modulus and strength, and tear and abrasion resistance. Moreover, a significant decrease in the time to reach 97% of curing, tc (97) is observed, which indicates that the fibers tend to increase the vulcanization rate, regardless of the rubber used. Fibers give also rise to an increase in crosslinking, especially the aramid fibers.  相似文献   

12.
Enhancement of tensile strength, impact strength, and flexural strength of polypropylene/short glass fiber composites by treating the glass fibers with coupling agent, mixing with maleated polypropylene (MPP) for compatibilization and adhesion, and with nucleating agent for improvement of polypropylene crystallization was studied. The results showed that both the silane coupling agent and MPP enhance tensile strength, impact strength, and flexural strength. In the absence of MPP, the effect of silane coupling agent on the mechanical properties of the composites decreases in the following order: alkyl trimethoxy silane (WD‐10) > γ‐methacryloxypropyl trimethoxysilane (WD‐70) > N‐(β‐aminoethyl)‐γ‐aminopropyl trimethoxysilane (WD‐52), whereas in the presence of MPP, the order changes as follows: WD‐70 > WD‐10 > WD‐52. When the glass fibers were treated with WD‐52, 4,4‐diamino‐diphenylmethane bismaleimide (BMI) can further enhance the mechanical properties of the composite. The three kinds of strengths increase with MPP amount to maximum values at 5% MPP. As a nucleating agent, adipic acid is better than disodium phthalate in improving the mechanical properties, except for the notched impact strength. Wide‐angle X‐ray diffraction showed that the adipic acid is an α‐type nucleating agent, whereas disodium phthalate is a β‐type nucleating agent. Blending with styrene–butadiene rubber can somewhat improve the notched impact strength of the composites, but severely lowers the tensile strength and bending strength. Scanning electron micrographs of the broken surface of the composite showed greater interfacial adhesion between the glass fibers and polypropylene in the modified composite than that without modification. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 96: 1414–1420, 2005  相似文献   

13.
Polypropylene composites filled with glass beads (GBs) were prepared by means of a twin‐screw extruder. The tensile properties and impact‐fracture strength of the composites were measured at room temperature to identify the effects of the GB content and surface treatment on the mechanical properties. The results show that the relative elastic modulus increased nonlinearly, whereas the tensile strength decreased with increasing GB volume fraction (?f). The notched impact strength increased with increasing ?f when ?f was less than 11%, and then, it decreased; this might have been related to the GB aggregation in the case of higher concentration. The mechanical properties of the composite systems in which the GB surface was treated with silane coupling agent were better than those of the composite systems filled with the untreated GBs under the same conditions. Furthermore, the impact‐fractured surfaces were observed with a scanning electron microscope to understand the interfacial morphology between the inclusion and the matrix and to examine the toughening mechanisms. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

14.
Accurate determination of mechanical properties plays an important role to comment on improvement in the mechanical properties of particle‐filled PP fibers. However, the existing standards are not totally suitable for reliable strength determination of particle‐filled PP fibers. In the framework of this study, microsized talc particle‐filled PP fibers were produced with different talc ratio and tensile strength measurements were performed with various gage lengths. Statistical Akaike Information Criterion analysis shows that strength distribution of talc‐filled PP fibers is best characterized by Weibull distribution function. It is reported that, the gage length has almost no influence of Weibull parameters of pure PP fibers while strong effects on Weibull parameters of talc‐filled PP fibers. It is shown that if the tensile strength of talc‐filled PP fibers is to be measured, at least 50 samples, which is more than value suggested by existing standard, should be used for a reliable determination of Weibull parameters. Therefore, the main aim of this study is to question the feasibility of minimum sample size suggested by the existing ASTM D3822 standard for reliable strength measurement of talc filled PP fibers. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 44083.  相似文献   

15.
The effects of glass bead filler content and surface treatment of the glass with a silane coupling agent on the room temperature impact fracture behavior of polypropylene (PP)/ethylene‐propylene‐diene monomer copolymer (EPDM)/glass bead(GB) ternary composites were determined. The volume fraction of EPDM was kept constant at 10%. The impact fracture energy and impact strength of the composites increased with increasing volume fraction of glass beads (?g). Surface pretreatment of the glass beads had an insignificant effect on the impact behavior. For a fixed filler content, the best impact strength was achieved when untreated glass beads and a maleic anhydride modified EPDM were used. The impact strength exhibited a maximum value at ?g=15%. Morphology/impact property relationships and an explanation of the toughening mechanisms were developed by comparing the impact properties with scanning electron micrographs of fracture surfaces.  相似文献   

16.
The PP Composites containing Xanthoceras sorbifolia Bunge husks fibers with different surface treatments were prepared. The mechanical properties such as tensile properties and impact properties of the composites were investigated. It is revealed that the composites with fibers treated by alkali and the following treatments of silane coupling agents KH570, titanate coupling agent JN‐9A, acetic anhydride, MAPP, or bleach, all performed higher in tensile properties than that with untreated fibers, while lower in impact properties. Meanwhile, all treated fibers performed better thermal stability than untreated fibers. The fibers treated by alkali followed by KH570 treatment were added into PP with different contents. It is found that as the fiber content increases, the elastic modulus and impact strength of the composites increase sharply at first followed by a decrease, while the tensile strength decrease initially and increase with a peak at 10%, then decrease continuously. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41217.  相似文献   

17.
The aim of this article is to determine the effect of surface pretreatments, prior to the silanization, on the structure and tensile properties of the glass fibers and their epoxy composites. Commercial glass fibers were washed with acetone to remove the soluble portion of sizing, calcinated for the removal of organic matter, activated for surface silanol regeneration, and silanizated with glycidoxypropyltrimethoxysilane (GPS). Tensile test was carried out. The morphology of pretreated glass fibers and the fracture surfaces of the epoxy composites were observed with a scanning electron microscope (SEM). The results revealed that both apparent modulus and strength of a single glass fiber and the glass fiber/epoxy resin composites strongly depend on the fiber surface pretreatments. The acetone treatment did not change appreciably the composition and tensile properties of glass fibers, but there was a weak interface between fibers and matrix. In calcinated and acid activated fibers, the two competitive effects was observed: (1) degradation of the fibers themselves and (2) improved interfacial adhesion between the glass fibers and the epoxy matrix, once the samples was silanizated. The ATR‐FTIR results show that the surface content of Si OH increases as reflected by the increasing of the Si O band, resulting in an interaction between silane coupling agent and glass fiber. POLYM. COMPOS., 91–100, 2016. © 2014 Society of Plastics Engineers  相似文献   

18.
The single-fiber-composite (SFC) technique was used to study the interfacial behavior between two flexible blends of diglycidylether of bisphenol A (DGEBA)-based epoxy and polyglycol epoxide and three glass fibers. Dog-bone-shaped SFC specimens were made and strained to obtain a distribution of fragment lengths. The fibers were tension-tested at two different gauge lengths. The fragment length distributions, the fiber strength data, and a Monte Carlo simulation of a Poisson/Weibull model for fiber strength and flaws were used to obtain the effective interfacial shear strength values. The results show that the interface does not fail. Instead, penny-shaped transverse cracks appear at every fiber break and grow as the specimen is strained. The interfacial shear strength values are many times higher than the yield shear strength values of bulk epoxy obtained from the tension test.  相似文献   

19.
This study investigates the influence of aggregates, glass fibers and a coupling agent on the compressive and flexural (three-point and four-point bending) behavior of a polyester mortar. Particle size of fine aggregates (quartz and limestone) varied from 0.1 to 5 mm (0.004 to 0.2 inch) and the glass fiber content was varied up to 6% by weight of mortar. A silane was introduced into the polyester mortar by pretreating the aggregates and the glass fibers. The mechanical properties of mortar were studied at room temperature. The test results indicate that the selection of aggregate type, size and distribution is very important. Silane treated aggregate systems showed more than 66% increase in compressive strength and 35% increase in flexural strength when compared to the untreated systems. Addition of glass fibers enhances the strength and toughness of the polyester mortar, and silane treatment of glass fibers helps to further enhance these properties. Flexural (three-point bending)-to-compressive strength ratio varied from 0.28 to 0.35 for unreinforced system and from 0.26 to 0.54 for the reinforced system. The mortar with only 14% polyester and 86% aggregates (by weight) and a coupling agent had a compressive strength of 103 MPa (15,000 psi) which is 94% of the polyester polymer strength. A stress-strain relationship is proposed to represent the complete stress-strain response under compression and flexural loading. Also, a method is proposed to quantify the failure patterns.  相似文献   

20.
It was found that the lengths of fibre fragments in a test CMF are distributed in a wide range of values that differ by ten times and more. The scattering is more important for the bimodal distribution characteristic of untreated carbon fibre. The use of fragments of average length formed on completion of fragmentation of the fibre in assessing adhesion as the critical length results in overstated results. The extrapolation method of determining the strength of fibres of the critical length is an additional source of errors. It is recommended that the length of fragments corresponding to the beginning of failure of adhesion be used as the critical length for assessing adhesion. In this case, the strength of fragments with an average length of lcr=lc can be determined directly in the CMF test; the calculated adhesive strength approaches the shear strength of real composites; it is then possible to study the adhesion of high-strength fibres to brittle matrices. A method of plotting the strength distribution of fragments formed in the test CMF is proposed.Uvikom TOO, Mytishchi. Translated from Khimicheskie Volokna, No. 2, pp. 39–44, March–April, 1996.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号