首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Al 6013-20 SiC (p) in tempers T4, O, and F is sensitive to localized corrosion in 3.5 wt.% NaCl because of the preponderance of the secondary phase particles of Cu, Fe, and Cr at the Al/SiC interface. Treatment with cerium chloride effectively inhibited the localized corrosion of the alloy by suppressing the cathodic reactions at Al 6013/SiC interface as shown by electrochemical investigations. Morphological studies showed the formation of a protective cerium oxide/hydroxide films, which suppresses the corrosion of the alloy.  相似文献   

2.
Abstract

The corrosion behaviour of aluminium alloy 6013-20 SiC(P) at controlled velocities and elevated temperatures was investigated by electrochemical studies. The alloy in temper T4 (solution treated, quenched and naturally aged) showed a higher resistance to corrosion compared to the annealed and as fabricated tempers. It exhibited a decreased resistance to corrosion in 3·5 wt-% NaCl solution containing suspended polystyrene particles at solution velocities 1–3 m s–1. No significant reduction in corrosion resistance was observed in environmental chamber studies. Alloy Al 6013-20 SiC(P) offered good resistance to corrosion in salt spray chamber. The secondary phase intermetallic precipitates were the preferred sites for localised corrosion.  相似文献   

3.
Abstract

This paper presents new data on the effect of temperature and velocity on the pitting potential Ep, corrosion potential Ecorr, and pitting morphology of O, F, and T4 tempers of alloy 6013-20SiCp in 3·5 wt-%NaCl in the temperature range 30–130°C and at velocities of 0·5–1·0 m S?1. The pitting potential of tempers T4 and O tended to increase with increasing temperature and flow velocity, but the pitting potential of temper F showed the opposite behaviour. Temper T4 of the alloy showed the best resistance to pitting. Alloy 6013-20SiCp in temper T4 is therefore considered to be suitable for application in chloride containing environments.  相似文献   

4.
Studies of stress corrosion cracking (SCC) behaviour by slow strain rate test (SSRT), potentiodynamic electrochemical polarization and measurement of electrical resistivity were carried out on 8090 and 1441 Al‐Li‐Cu‐Mg‐Zr alloys in their peak aged T8, over aged T7 and retrogressed and reaged (RRA) T77 tempers. It has been found that the SCC resistance is maximum in the T7 temper, least in the T8 temper and in the RRA T77 tempers it lies in between to that of the T8 and T7 tempers, indicating that RRA heat treatment given to the T8 temper of both alloys caused an improvement of SCC resistance. Further, studies on the electrical conductivity measurements and electrochemical polarization of all tempers of both alloys showed that T7 temper has maximum electrical conductivity and most negative (anodic) open circuit potential (OCP), T8 has the minimum and the least respectively, whereas, in the T77 tempers these values lie in between to those of the T8 and T7 tempers. Therefore, a definite pattern of variation of these results with RRA treatment draws an attention to correlate SCC behaviour, electrical conductivity and OCP values which are explained on the basis of microstructural features revealed by TEM and XRD studies.  相似文献   

5.
Sheet material of the Al‐Mg‐Si alloy 6061 in the tempers T4 and T6 was thermally exposed at temperatures ranging from 85 to 120°C for 1000 h. The microstructure, tensile properties and the corrosion behaviour in the different heat treatment conditions were investigated using differential scanning calorimetry and transmission electron microscopy as well as performing tensile tests and various corrosion tests. The additional heat treatments, which should simulate aging during long‐term service usage, caused an increase in strength of 6061‐T4 sheet, associated with changes in the naturally aged microstructure. Thermal exposure at 120°C for 1000 h resulted in tensile and corrosion properties being similar to those obtained for peak‐aged sheet. Alloy 6061 in the T6 temper exhibited microstructural stability when additionally heat treated at 85 and 120°C for 1000 h. No significant alterations in the microstructure, tensile properties, and corrosion performance were observed after exposure to slightly elevated temperatures.  相似文献   

6.
The effect of temper condition and corrosion on the fatigue behavior of alloy AA2219 has been investigated in different temper conditions (T87 and T851). Corrosion testing was performed by exposing the tensile specimens to 3.5% NaCl solution for different time periods, and the corrosion damage was quantified using a 3D profilometer. The exposure-tested specimens were subjected for fatigue testing at different stress levels, and the reduction in fatigue life was measured along with detailed fracture morphology variations. The results indicated that the alloy in both tempers suffers localized corrosion damage and the measured corrosion depth was 120 and 1200 µm, respectively, for T87 and T851 conditions. The loss in fatigue strength was found to be high for T851 (67%) when compared to that of T87 temper condition (58%) for a pre-corrosion time of 15 days. In both cases, fatigue crack initiation is associated with corrosion pits, which act as stress raisers. However, the crack propagation was predominantly transgranular for T87 and a mixed transgranular and intergranular fracture in the case of T851 temper condition. This was shown to be due to the heterogeneous microstructure due to the thermomechanical working and the delay in quench time imposed on the alloy forging in T851 temper condition. The findings in this paper present useful information for the selection of appropriate heat treatment condition to facilitate control of the corrosion behavior which is of great significance for their fatigue performance.  相似文献   

7.
The microstructure evolution of aluminium alloy 6016 processed by equal channel angular pressing (ECAP) was investigated for different processing parameters. A number of heat treatments, including F, W, O, T4, T6 and T7, were evaluated for workability required to withstand the severe plastic deformation. It was found that this aluminium alloy had limited workability at room temperature in the F, W and T4 tempers, especially at low levels of applied back pressure, while both the O and T7 tempers can be pressed to a very high strain (~1800%) without failure. Considering that the O temper has better utility for industry because of decreased preparation time, a complete study of microstructure after ECAP processing with and without back pressure was carried out for the O temper. The thermal stability of microstructure after 16 ECAP passes with 200 MPa of back pressure was also studied.  相似文献   

8.
采用透射电镜,拉伸性能测试和慢应变拉伸等手段研究时效制度对2099铝锂合金微观组织和力学及应力腐蚀性能的影响。研究采用1组T6(175℃/48 h)制度和2组T8制度对试样进行处理。实验发现,T8状态下试样的抗拉强度均高于T6态。同时T8态中双级时效制度(2.5%预变形,120℃/12 h+150℃/48 h)相比于单级时效制度(2.5%预变形,150℃/48 h)具有更优异的综合性能。对2099合金进行应力腐蚀测试,试样并未发生强度损失现象,然而失效却加速。合金经过T8双级时效后,抗拉强度、屈服强度和延伸率分别为590 MPa、570 MPa,9.3%。  相似文献   

9.
The corrosion behaviour of the twin belt cast EN AW 7075 alloy is governed by intermetallic phases, namely Al12(Fe,Cr,Mn)3Si, Mg2Si and CuAl2, and by Mg(Zn,Cu,Al)2 precipitates. The former are responsible for pitting activities while the Mg(Zn,Cu,Al)2 precipitates play a key role in intergranular corrosion. The very fine dispersion of Mg(Zn,Cu,Al)2 precipitates in samples aged to peak hardness undergo coarsening, particularly along the grain boundaries, when the hot band samples are overaged. Overageing improves the resistance to intergranular corrosion while the samples in T6 temper suffer heavy attack along grain boundaries. While ageing treatments hardly produce any change in the features of the intermetallic particles, they nevertheless seem to impact the pitting response. This may be accounted for also by the precipitation activities which in turn, change the chemistry of the solid solution matrix. Overageing to the T73 temper implies a higher purity matrix and thus changes the microgalvanic effects when exposed to neutral chloride solutions.  相似文献   

10.
The recently developed aluminum alloy 6013-T6 has been selected for the fuselage skin and other applications on the U.S. Navy’s P-7A airplane, in place of the traditional 2024-T3 clad sheet. Alloy 6013-T6 is naturally corrosion resistant, like the well-established alloy 6061, and hence is used unclad. Its fatigue strength, fatigue crack growth and fracture toughness compare favorably with 2024-T3. Replacement of alloy 2024 with alloy 6013 also reduces manufacturing costs for formed parts, because 6013 is readily formed in the T4 temper, then simply aged to T6, thus avoiding the costly heat treatments and straightening required for alloy 2024.  相似文献   

11.
Microanalytical, mechanical, and corrosion studies were undertaken to investigate the effect of nano‐precipitates of Al(Scx−1Zrx) on the mechanical and corrosion characteristics of Al 2.5 alloy containing 0, 0.15, 0.3, 0.6, and 0.9 wt% of Sc with 0.15 wt% Zr. Addition of 0.3% Sc significantly increased the yield strength due to small precipitates sizes (5–19 nm) and the high coherency of the nano‐particles. Largest contributor to the strength was grain boundary strengthening caused by pinning of grain boundary precipitates. The alloys showed a good resistance to corrosion in 3.5 wt% neutral chloride solution. The alloy offered a high passivation tendency because of homogeneous coherent nano Al(Scx−1Zrx) precipitates. The nano precipitates interfaces and homogeneously distributed Al3Sc precipitates offer a high degree of corrosion resistance to Al 2.5 Mg Sc alloys compared to conventional aluminum alloys, such as Al 6061 and Al6013.  相似文献   

12.
总结了铝合金在青岛海域海水全浸区暴露16年的腐蚀结果,防锈铝LF2Y2,LF6M(BL),F21M,180YS在海水全浸区有好的耐蚀性,工业纯铝L4M,锻铝LD2CS的耐蚀性较差,无包铝层的硬铝LY12CZ和超硬铝LC4CS在海水中的耐蚀性很差,硬铝,超硬铝的包铝层起牺牲阳极作用,使基体受到保护,海生物污损对铝合金在海水中的腐蚀有明显影响,镁、锰能提高铝的耐海水腐蚀性,硅明显降低铝的耐蚀性,铜严重损害铝的耐蚀性,腐蚀电位较负的铝合金耐海水腐蚀性较好,腐蚀电位较正的铝合金耐海水腐蚀性较差。  相似文献   

13.
The stress corrosion cracking behaviour of 7075 (Al–Zn–Mg–Cu) alloy have been studied in a salt spray fog chamber with two vapourised aqueous solutions (0 and 5% NaCl). The paper analyses the stress corrosion resistance of 7075 aluminium alloy with several precipitation‐ageing heat treatments. The results are compared with that obtained in 3.5% NaCl aqueous solution at 20 °C. The salt spray fog testing has permitted a good evaluation of SCC susceptibility in 7075 alloy. All temper conditions studied were susceptible to SCC in the different environments tested. 7075‐T6 temper was the most susceptible, while in all the cases studied 7075‐T73 temper was the least susceptible. Compared to 7075‐T6, 7075‐RRA temper improved the resistance against the SCC process, but the mechanical properties obtained were lower.  相似文献   

14.
The exfoliation corrosion susceptibility and electrochemical impedance spectroscopy (EIS) of 7150 Al alloys with T6, T73, and RRA (retrogression at 175 °C for 3 h) tempers in EXCO solution were investigated. The anodic equilibrium precipitate η(MgZn2) is continuous or closely spaced at the grain boundaries in the 7150‐T6 Al alloy, resulting in its greatest susceptibility to exfoliation corrosion. The grain boundary η precipitates in the RRA and T73 treated 7150 Al alloys are coarsened and show a clear discontinuous nature; they possess similar exfoliation corrosion sensitivity and their exfoliation corrosion resistance is greatly increased. At the beginning of immersion in EXCO solution, the EIS plot of the 7150 Al alloys is composed of a capacitive arc in the high to medium frequency range and an inductive component in the medium to low frequency range. As immersion time is increased, exfoliation corrosion with different corrosion ratings occurs on the surface of the 7150 Al alloy with various tempers, two capacitive arcs appear in the high to medium and medium to low frequency ranges, respectively. The fitted medium to low frequency capacitance C2 of 7150‐T6 Al alloy, corresponding to the new surface caused by the exfoliation corrosion, is much greater than that of the T73 and RRA treated 7150 Al alloy, which is consistent with the greatest exfoliation corrosion susceptibility of the 7150‐T6 Al alloy.  相似文献   

15.
黄桂桥 《腐蚀与防护》2002,23(1):18-20,23
总结了铝合金在青岛海域海水潮汐区暴露16年的腐蚀试验结果,防锈铝LF2Y2、LF6M(BL)、F21M、180YS在海水潮汐区有好的耐蚀性,工业纯铝L4M、锻铝LD2CS的耐蚀性较差,硬铝LY11CZ(BL)、LY12CZ(BL)和超硬铝LC4CS(BL)的包铝层起着牺牲阳极作用,使基体受到保护,海生物污损对铝合金的腐蚀有明显影响,镁,锰能提高铝在海水潮汐区的耐蚀性,硅明显降低铝的耐蚀性,铜严重损害铝的耐蚀性。  相似文献   

16.
The intercrystalline corrosion, exfoliation corrosion (EXCO), and stress corrosion cracking (SCC) of Al–Zn–Mg–Sc–Zr alloy were investigated by means of constant temperature immersion corrosion method, optical microscopy, transmission electron microscopy (TEM), and electrochemical impedance spectroscopy (EIS). The results show that intercrystalline corrosion, and EXCO susceptibility of Al–Zn–Mg–Sc–Zr alloy decrease gradually with increasing of aging time. Corrosion susceptibility order from low to high is as follows: OA > PA > UA > NA. The SCC susceptibility index of PA temper is more than OA temper at the same strain rate. According to TEM observation, with aging time prolonging, a part of η′ phases transform to η equilibrium phases, which become coarse gradually. The distribution discontinuity of the grain boundary precipitates increases. In addition, for Al–Zn–Mg–Sc–Zr alloy without EXCO, the EIS is comprised by a capacitive impedance arc at high frequency and an inductive impedance arc at low frequency. Once EXCO occurs, the EIS is composed of two capacitive impedance arcs at high frequency and at low frequency, respectively.  相似文献   

17.
Industrial components made with a magnesium-aluminum alloy AZ31 are often used in diverse engineering applications where component weight,strength,and durability are critical.Similarly as other Mg alloys,however,the AZ31 is susceptible to corrosion in alkaline environments.In this work,corrosion of commercial grade AZ31 alloy plate was examined in potassium hydroxide(KOH) using immersion and potentiodynamic studies.The results suggest that the concentration of Al and Mn in the alloy may govern the kinetics of micro-galvanic corrosion and the initiation of corrosion pits.Further,trace amounts of Ni in the AZ31 alloy were seen to enable formation of Ni(OH)2 surface layer,which may have further accelerated alloy corrosion due to its cracking and void coalescence.The effect of pH on the corrosion behavior of AZ31 was studied with reference to Pourbaix diagrams.  相似文献   

18.
通过动电位极化使LY12铝合金表面产生点蚀后分别涂刷富镁涂层和环氧涂层,利用电化学阻抗等方法研究了富镁涂层对于铝合金基体点蚀的作用。结果表明:富镁涂层使铝合金的开路电位发生明显的负移,并在较长时间保持稳定,基体发生腐蚀的时间显著延迟,说明富镁涂层对于铝合金具有明显的阴极保护作用;点蚀的存在使得富镁涂层中的镁粉溶解速率加快,能更有效地保护基体;富镁涂层试样的铝合金基体浸泡后点蚀无明显的发展,说明富镁涂层能够一定程度上抑制铝合金表面点蚀的生成及发展。  相似文献   

19.
In this paper, the influence of T6, T74 and RRA aging treatments on microstructure, strength and corrosion behaviour of high Zn content Al–Zn–Mg–Cu alloy was investigated by tensile properties tests, inter-granular corrosion (IGC) tests, exfoliation corrosion (EXCO) tests, polarisation tests, metallographic microscope and transmission electron microscopy (TEM) analysis. The results show that the T74 and RRA temper can increase the size and the distribution discontinuity of the grain boundaries precipitates (GBPs), thus leading to improvement of the corrosion resistance. However, with the coarser matrix precipitates (MPs) relative to T6 treatment, RRA and T74 temper both have a decrease in strength. Besides, all the performances (including mechanical properties and corrosion properties) of the RRA treatment show an intermediate level relative to T6 and T74. Therefore, we can select the appropriate heat treatment process according to the different performance requirements in the industrial production.  相似文献   

20.
Corrosion behaviour of different tempers (namely NA, UA, PA and OA) of Al? Zn? Mg? Cu? Zr? Sc alloy was studied by potentiodynamic polarization, electrochemical impedance spectroscopy (EIS), optical microscopy (OM) and transmission electron microscopy (TEM). Over aged (OA) can decrease the susceptibility to exfoliation due to the discontinuous distribution of the η precipitates at the grain boundaries, cause a negative shift of the corrosion potential (Ecorr), and lead to the prolonging of the time of the appearance of two time constants in impedance diagrams. In addition, Al? Zn? Mg? Cu? Zr? Sc alloy with over aged treatment has an enhanced resistance to exfoliation corrosion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号