首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
王涛  司玉军 《材料导报》2012,(Z1):36-38
以三聚氰胺为前驱体,在氮气保护下进行高温热处理,借助X射线衍射、红外光谱、元素分析手段对产物进行表征。结果表明,在较低的400℃进行热处理时,前驱体中的N、H原子即开始逸出,产物中有层状g-C3N4的衍射峰出现,但是前驱体分解不完全。在500℃及高于500℃进行热处理时,可制备出纯态的g-C3N4,并且随着热处理温度的逐渐升高,所得产物的氮、碳原子比及其结构与理想层状石墨相g-C3N4差异逐渐减小。  相似文献   

2.
日益增长的能源消耗使得环境压力不断加剧,寻求有效解决水体污染的途径成为了材料学科的热点课题之一。类石墨相氮化碳(g-C_3N_4)是一种具有类似石墨烯结构的聚合物,其独特的电子结构和化学性质使其拥有了良好的光催化性能,可广泛应用于太阳能转换和污染物降解。本文针对掺杂型g-C_3N_4,主要综述了非金属元素掺杂型g-C_3N_4、金属元素掺杂型g-C_3N_4和混合元素掺杂型g-C_3N_4在光催化领域的应用进展;最后对掺杂型g-C_3N_4的发展趋势进行了展望。  相似文献   

3.
随着社会的迅速发展,污染物的排放量也日益增多,严重破坏了生态环境。尤其是废水中的重金属离子,严重破坏了水生态环境,对水生动、植物以及人体健康都造成了极大损害。因此,处理废水中的重金属离子对保护水生态环境意义重大。目前,研究人员探索出许多净化废水中重金属离子的方法,包括物理修复法、化学治理法、生物治理法、膜分离法以及光催化法。其中,光催化是一种环境友好、节能的方法,其核心是光催化材料。类石墨相氮化碳(g-C_3N_4)因其良好的化学稳定性、热稳定性和光电性质,成为近年来研究最广泛的非金属光催化剂。但纯氮化碳存在比表面积小、禁带宽度较大、可见光反应范围小、光生电子空穴复合率较高等缺点,因此需对氮化碳进行改性,以提高其光催化活性。氮化碳的改性方法主要有形貌调控、掺杂改性、贵金属沉积、异质结法。本文重点归纳了改性氮化碳作为光催化剂光催化处理六价铀离子(U~(6+))、六价铬离子(Cr~(6+))、铜离子(Cu~-EDTA)、汞单质(Hg~0)的研究现状,总结了氮化碳还原净化重金属离子的研究进展,以期为未来光催化研究提供参考。  相似文献   

4.
通过对石墨相氮化碳(g-C_3N_4)光催化剂修饰改性,以便控制光生电子-空穴对的复合,从而使得其光催化活性得到改善。非金属掺杂g-C_3N_4光催化剂能够拓展其光谱响应范围,从而提高了g-C_3N_4的量子效率;贵金属沉积修饰g-C_3N_4光催化剂,能够优化g-C_3N_4光催化剂表面电子结构、促进光生电子与空穴对的快速分离,改善催化剂表面化学吸附状态;通过半导体偶合,使得催化系统的载流子的分离效率得到改善,进而拓展了催化材料对光谱的吸收范围,提高了复合催化剂的光活性。阐述了近年来国内外非金属掺杂、贵金属沉积、半导体复合g-C_3N_4光催化剂在污水处理、光催化分解水产氢等领域中应用的研究进展,并提出在g-C_3N_4光催化剂修饰改性研究中存在的关键问题和以后努力的方向。  相似文献   

5.
石墨相碳化氮(g-C_3N_4)作为一种成本低廉、化学性质稳定、带隙窄的光催化剂,一直是材料科学领域的研究重点。虽然g-C_3N_4存在光生载流子复合率高、可见光利用率低、比表面积较小等缺点,但由于其聚合物的本身特性适合制备g-C_3N_4基复合材料,从而可以通过引入其他化学元素或异质结对g-C_3N_4进行改进,提高其光催化活性。与非金属共价掺杂不同,碱金属、碱土金属改性g-C_3N_4具有金属掺杂的非局域化特性,其表面活性位点增多,载流子分离率降低并且能使能带位置发生改变,从而具有较好的光催化性能,因此成为一个新的研究热点。综合考虑经济性和实用性,目前用来改善g-C_3N_4性能的碱/碱土金属元素多为锂(Li)、钠(Na)、钾(K)、钡(Ba)、镁(Mg)、钙(Ca)。现有的大部分数据表明,Li、Ca两种元素对g-C_3N_4的改性效果较好,尤其是Ca元素。同时结合不同制备工艺,如选择不同的前体,采用介孔材料作为催化剂载体,改变制备过程中的加热方式(控制升温速率、煅烧温度和时长),可以使g-C_3N_4的光催化活性进一步提高。虽然碱金属、碱土金属改性g-C_3N_4的理论依据是金属离子的引入会对能带结构和载流子迁移率产生影响,但金属离子与周围原子的相互作用和对能带的调控机理还未明确,实现碱金属/碱土金属可控改性g-C_3N_4也尚待研究。对碱金属、碱土金属改性g-C_3N_4的系统研究仍需继续进行大量的实验作为分析验证的基础。本文对国内外碱金属、碱土金属掺杂改性g-C_3N_4技术的发展现状进行了总结,归纳了改性g-C_3N_4的制备方法及应用范围,将改性g-C_3N_4在实际应用领域(氮氧化合物降解、光解水析氢、有机污染物降解)的光催化活性进行对比,按照掺杂元素种类和数量将其分为单掺杂和复合掺杂,并对其增强机理进行归纳整理,提出了当前碱金属、碱土金属改性g-C_3N_4发展所面临的问题,并对未来将要进行的工作及发展趋势进行了展望。  相似文献   

6.
以硼砂、硼酸、氧化硼为硼源对石墨相氮化碳(g-C_3N_4)进行硼掺杂,通过一系列实验确定了最优的掺杂硼源、掺杂温度和掺杂比例,并对掺杂处理方法进行了优化。通过XRD、UV-Vis、XPS、FT-IR、PL、TEM和SEM等手段对样品进行表征分析,以罗丹明B为降解用污染物测试样品的光催化活性。结果表明:硼的掺入拓宽了样品对可见光的响应范围,减小了样品的能带宽度,提高了对可见光的利用率,同时抑制了光生电子-空穴的复合,增加了比表面积,进而显著提高了样品的光催化性能。其中样品B-CN(1∶6)光催化活性最高,其光催化降解罗丹明B的速率常数是g-C_3N_4的3.1倍。  相似文献   

7.
8.
通过加热AgNO3与g-C3N4成功制备了Ag/g-C3N4复合光催化材料。利用X射线衍射仪(XRD)、傅里叶红外光谱仪(FTIR)分析热解产物的物相和结构,采用紫外-可见吸收光谱和光致发光谱(PL)表征样品的光吸收和荧光性质。以罗丹明B为模型污染物,评价样品的可见光(λ≥420nm)光催化性能。结果表明:与纯g-C3N4相比,3%载银量的Ag/g-C3N4复合光催化材料在可见光下降解罗丹明B的光催化性能最好。分析表明Ag与g-C3N4的协同作用抑制光致电子空穴对的复合是光催化性能提高的主要原因。  相似文献   

9.
以尿素(CO(NH2)2)和磷酸氢二铵((NH4)2HPO4)作为原料, 通过热聚合法制备了磷(P)掺杂石墨相氮化碳(g-C3N4)材料(P-CN)。通过X射线衍射、红外光谱、X射线光电子谱、扫描电子显微镜、透射电子显微镜、紫外可见漫反射光谱和N2吸附-脱附对样品进行了表面形貌及结构表征, 通过对罗丹明B(RhB)的降解实验, 研究了样品的可见光催化性能, 对其催化机理进行了分析。结果表明, 合成过程中磷原子的掺杂会取代g-C3N4中的C原子, 从而改变g-C3N4的表面形貌和电子结构。在可见光条件下, P-CN材料表现出优异的光催化性能, 其对RhB的降解速率明显优于纯氮化碳。其中3%P-CN样品催化活性最高, 反应30 min时, RhB降解率达到96.8%。分析认为, P原子对g-C3N4中的C原子的取代使P-CN样品表面处于富电子状态, 并导致P-CN样品导带位置升高, 光电子还原性增强。这些电子与水中的溶解氧形成超氧自由基(·O2-), 从而使得光催化性能显著提高。  相似文献   

10.
采用水热法合成了可见光响应的TiO_2/g-C_3N_4复合催化剂,通过X射线衍射(XRD)、氮气吸附-脱附(BET)法、透射电子显微镜(TEM)、紫外-可见漫反射(UV-vis DRS)、荧光光谱(PL)、X射线光电子能谱(XPS)对样品进行了表征。并以亚甲基蓝为降解对象,考察了在可见光条件下不同催化剂对亚甲基蓝的降解能力。研究结果表明,锐钛矿型二氧化钛均匀地负载在石墨相氮化碳片层上,TiO_2/g-C_3N_4复合材料的光吸收带边扩展到470nm,具有优异的可见光催化效率,它对亚甲基蓝的光催化降解率达到99.0%。  相似文献   

11.
12.
以硫脲和四水合硝酸镉为前驱体,设计了低比例、高比例两种不同石墨相氮化碳(g-C3N4)与CdS质量比,以简单的软化学法制备了CdS-g-C3N4复合光催化剂,采用SEM、XRD、紫外-可见漫反射光谱(UV-Vis DRS)、FTIR、物理吸附等对CdS-g-C3N4复合光催化剂的结构和性能进行表征,并通过NO光催化降解实验探究了CdS-g-C3N4复合光催化剂在可见光下的光催化活性。结果表明:低CdS质量比的CdS-g-C3N4复合光催化材料中,当CdS与g-C3N4质量比为7%时,CdS-g-C3N4复合光催化剂的降解效果最好,降解率达31%;低g-C3N4质量比的CdS-g-C3N4复合光催材料中,当g-C3N4与CdS的质量比为5%时,CdS-g-C3N4复合光催化剂的降解效果最佳,降解率为36%。CdS与g-C3N4质量比为大比例的CdS-g-C3N4复合光催化剂中,当CdS与g-C3N4的质量比为4:1时,CdS-g-C3N4复合光催化剂的降解效率最高,达33%。且g-C3N4与CdS质量比为5%的CdS-g-C3N4复合光催化剂具有良好的光稳定性,降解效果最佳。   相似文献   

13.
以三聚氰胺为前驱体,先通过煅烧法制备石墨相氮化碳(g-C_3N_4),再利用超声法引入铜酞菁(CuPc)制备出石墨相氮化碳/铜酞菁(g-C_3N_4/CuPc或CN@CuPc)光催化复合材料。通过场发射扫描电子显微镜(FESEM)、X射线衍射谱(XRD)及紫外-可见吸收光谱(DRS)等分析手段对所制备材料进行表征。以2,3-二氯苯酚为目标污染物,在500 W氙灯的照射下,考察了复合材料的含量、复合材料的投加量及污染物初始浓度等条件对光催化效果的影响。实验结果表明,在最佳的实验条件下,2,3-二氯苯酚经照射240 min后,降解率可达92%左右。该光催化反应符合拟一级反应动力学模型;在此反应过程中,起关键作用的活性物种为羟基自由基(·OH)。  相似文献   

14.
<正>石墨相氮化碳(g-C3N4)是一种新型的非金属光催化材料,在可见光范围内具有一定的光吸收,同时还具有很好的热稳定性、化学稳定性和光稳定性,被广泛应用于光催化产氢、水氧化、有机物降解、光合成以及二氧化碳还原等。中国科学院理化技术研究所研究员张铁锐团队多年来集中纳米材料的可控设计以及光电催化性能的研究,前期  相似文献   

15.
以尿素为前驱体,550℃热聚合反应5 h,制备了块状g-C_3N_4。然后将块状g-C_3N_4超声剥离得到片状g-C_3N_4,在g-C_3N_4纳米片上原位生长Cd S(直径约130 nm),从而制备了g-C_3N_4-Cd S异质结。g-C_3N_4-Cd S异质结的吸收边约505 nm处,与g-C_3N_4(约460 nm)相比具有明显的红移,可吸收更多的可见光。此外,g-C_3N_4-Cd S异质结可降解99%的罗丹明B,具有较高的光催化活性。  相似文献   

16.
以三聚氰胺、硝酸铋、偏钒酸铵、硝酸、氨水等为主要原料,在热解法合成g-C_3N_4基础上,通过水热法合成g-C_3N_4/BiVO_4复合光催化剂。采用XRD、SEM、BET和UV-Vis等对合成产物的物相组成、微观形貌和光催化性能进行表征,通过降解亚甲蓝溶液对试样的光催化性能进行评价。结果表明:g-C_3N_4/BiVO_4复合光催化剂的光催化性能较纯BiVO_4和g-C_3N_4有显著提高,当g-C_3N_4∶BiVO_4(理论合成质量比)=0.4∶1、水热温度为140℃、水热时间为10 h条件下,合成的g-C_3N_4/BiVO_4复合光催剂具有最佳光催化性能,在高压汞灯照射150 min条件下,对亚甲蓝溶液(10 mg/L)的降解率为80.8%,比相同条件下纯BiVO_4和g-C_3N_4的光催化效率分别提高47.5%和22.1%,且光催化反应符合一级动力学方程。  相似文献   

17.
g相氮化碳(g-C_3N_4)在光催化领域有广阔的应用前景,但因其比表面积小、光生电子-空穴易复合、对光的吸收范围窄等缺点在实际应用中受到限制。通过制备高比表面积的介孔g-C_3N_4和对g-C_3N_4进行改性可以有效地改善上述缺点。综述了近年来介孔g-C_3N_4的制备方法及g-C_3N_4改性研究进展,同时对g-C_3N_4的发展方向做出了展望。  相似文献   

18.
通过固混法制备不同BiVO_4含量的BiVO_4/石墨相氮化碳(BiVO_4/g-C_3N_4)复合光催化材料。采用粉末X射线衍射仪、傅里叶变换红外光谱仪和扫描电子显微镜分别对BiVO_4/g-C_3N_4复合催化剂的晶相组成、官能团和微观形貌进行了表征;通过可见光照射下罗丹明B的降解来评价纳米复合材料的光催化活性。结果表明:在可见光照射3h后,30%(质量分数)BiVO_4/g-C_3N_4复合物的降解率最高,达到87%。BiVO_4/g-C_3N_4良好的光催化性能可以归因于在BiVO_4和g-C_3N_4的界面形成的异质结。  相似文献   

19.
以三聚氰胺、葡萄糖和氯化铵为原料制备一种具有高比表面积的碳氯共掺杂介孔g-C_(3)N_(4)(C-Cl-CN)光催化剂,并考察其光催化降解罗丹明B(RhB)的性能。采用XRD,XPS,SEM,UV-Vis DRS和PL测试手段表征和分析催化剂的晶型结构、化学组成及微观形貌。结果表明:C-Cl-CN具有最高的比表面积(108.7 m 2/g),降解RhB的速率常数达到0.02290 min^(-1),是纯g-C_(3)N_(4)的9.4倍,且具有良好的催化稳定性。葡萄糖和氯化铵在聚合过程中起到双气泡模板和元素掺杂剂的作用,一方面提升催化剂的比表面积,另一方面减小能带间隙,增强催化剂的光吸收性能。  相似文献   

20.
采用水热、煅烧制备Co_3O_4/g-C_3N_4复合催化剂。用IR、XRD、TEM、UV-Vis、电化学对复合材料分析结果表明,Co_3O_4均匀地附着在g-C_3N_4的表面,形成异质结。阻抗曲线表面异质结能够促进空穴和光生电子的转移和分离。在可见光照射下,当15%Co_3O_4/g-C_3N_4复合材料做为光催化剂,其光催化降解甲基橙的降解率可达90%,并拟合符合动力学一级方程,多次循环利用性能几乎不变。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号