首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
采用光学显微镜察、扫描电镜(SEM)和透射电镜(TEM)观察等分析方法,研究了7075铝合金铸锭组织及均匀化工艺。结果表明,Al-Zn-Mg-Cu-Cr合金的铸态凝固组织由Al基体+Mg(Zn,Al,Cu)2非平衡共晶相组成;均匀化温度在460℃时,合金中枝晶组织部分消失,低熔点相溶解不充分,在470℃均匀化出现过烧现象。合金经460℃×5h+480℃×24h和460℃×5h+490℃×24h均匀化之后,晶界处的共晶组织基本消除,但晶粒显著长大,两种双级均匀化的晶粒尺寸分别约为120μm和150μm。用400℃×5h+460℃×24h+470℃×24h三级均匀化后,基本消除了共晶组织,均匀化效果很好且晶粒尺寸约为75μm,是最佳的均匀化制度。  相似文献   

2.
采用光学显微镜、扫描电镜和差示扫描量热法等研究7050合金均匀化过程中的显微组织与化合物的演变。结果表明,7050合金铸态为典型的枝晶网状组织,其中片层状共晶组织由α(Al)和T相(Al Zn Mg Cu)组成,并存在少量含Fe相(Al7Cu2Fe)。均匀化温度在460℃以上,共晶相发生分解,且由T相向S相(Al2Cu Mg)发生转变,480℃以上S相发生溶解并逐渐减少,而含Fe相的形状和尺寸基本不发生变化。随均匀化时间的延长和温度的升高,T相逐步向S相完全转变,且S相逐渐溶解于基体中,残留很少。对于所采用的7050合金铸锭,为了消除共晶组织,减少残留化合物和合金元素均匀分布,460℃×24 h+480℃×8 h双级均匀化工艺为较合理的均匀化工艺。  相似文献   

3.
采用扫描示差量热法(DSC)、扫描电镜(SEM)、光学显微镜(OM)和能谱分析(EDS)等手段研究了含微量Zr的Al-Cu-Mg-Ag合金铸态与不同均匀化热处理态的显微组织演化和成分分布,测定了该合金铸态组织中的低熔点共晶相的成分和熔化温度,确定了该合金的均匀化处理制度和过烧温度.结果表明:Al-Cu-Mg-Ag-Zr合金铸态组织晶界上主要的非平衡相为Al2Cu,其熔点为523.52℃.合金经420℃×6h一级均匀化处理后,Al3Zr粒子在基体内二次析出且弥散分布.经515℃× 24h二级均匀化处理后,晶界上的非平衡相大部分溶入基体,枝晶偏析基本消除,晶内各元素分布均匀.该合金的最佳均匀化制度为420℃× 6h+515℃× 24h,均匀化过烧温度为520℃.  相似文献   

4.
研究了铸态Al-4.51Zn-1.77Mg合金在不同均匀化工艺条件下的显微组织的演变规律。结果表明:铸态Al-4.51Zn-1.77Mg合金的DSC曲线在476℃附近出现明显的吸热峰;(460~510℃)×24 h均匀化处理后,476℃附近的吸热峰消失。铸态合金晶粒之间包围着大量的枝晶网络,枝晶臂之间存在着大量的非平衡共晶。随均匀化温度的升高,非平衡共晶逐渐回溶到基体中;高于480℃时,晶粒内部和晶界处开始出现形状不规则的复熔粒子,合金出现过烧。在470℃进行均匀化处理,1 h后大部分第二相已回溶到基体中,随均匀化时间的延长,第二相含量逐渐减少;但24 h后,随时间延长第二相含量无明显变化。根据合金的均匀化动力学方程计算出适合实验合金的均匀化制度为470℃×26 h,与实验结果基本相符。  相似文献   

5.
采用金相显微镜、差示扫描量热仪、扫描电镜、扫描透射电镜研究了Al-Cu-Mg-Ag-Sc-Zr合金的铸态组织及均匀化过程中的组织演变。结果表明:合金的过烧温度为520℃,其最佳双级均匀化工艺为420℃×6 h+515℃×24 h;试验合金经双级均匀化处理后,低熔点共晶相少量残留,基体上均匀地析出细小弥散的Al3(Sc,Zr)粒子。  相似文献   

6.
采用光学显微镜、扫描电镜、能谱分析、X射线衍射分析和差示扫描量热分析研究了Al-9.1Zn-1.9Mg-1.6Cu合金铸态与均匀化态显微组织及相组成演化规律。试验结果表明,该合金铸态组织中存在大量的非平衡低熔点共晶相,其初始熔化温度为475℃;合金铸态组织相组成包括α-Al、η-MgZn2及少量的Al7Cu2Fe相;在460℃以上均匀化后,该合金处于α-Al单相区,组织中非平衡低熔点共晶相均能固溶于基体内;465℃×24h是该合金适宜的均匀化处理工艺。  相似文献   

7.
均匀化退火对ZA27合金组织与性能的影响   总被引:4,自引:2,他引:2  
采用差示扫描量热法(DSC)、光学显微镜(OM)、扫描电镜(SEM)等手段研究了均匀化处理对铸态ZA27合金显微组织及力学性能的影响,确定了该合金的均匀化温度及过烧温度.结果表明,合金铸态组织存在严重的枝晶偏析及明显的非平衡共晶组织,经360℃×12 h均匀化退火后,枝晶偏析及非平衡共晶β相基本消除,晶界处富Cu的ε相溶入基体,布氏硬度为84.5HB,抗拉强度为326 MPa,伸长率为10.2%.ZA27合金铸锭适宜的均匀化处理工艺为360℃×12 h.  相似文献   

8.
设计了一种Al-Zn-Cu-Mg高强铝合金,采用金相分析、力学性能测定,断口扫描等,对该合金的均匀化和固溶工艺进行了研究。结果表明:合金铸态组织中存在非平衡共晶相,经430℃×12 h+475℃×24 h双级均匀化处理后非平衡共晶化合物基本消失,Zn元素扩散基本结束,均匀化效果好。合金经470℃固溶处理60 min时,综合力学性能最佳,抗拉强度达到623 MPa,屈服强度达到571 MPa,伸长率为12.17%。  相似文献   

9.
采用SEM、DSC测试等手段研究了2E12合金铸锭的均匀化处理工艺以及微观组织在均匀化过程中的演变规律。结果表明:合金铸锭的晶界处连续分布着粗大的α+θ+S共晶组织,主要合金元素存在不同程度的偏聚。其中,Cu元素偏聚最为严重,而Mn元素偏聚程度较为轻微。在490~500℃均匀化时,合金粗大相的溶解速率对温度十分敏感,随着温度的升高粗大相的溶解速率迅速增加。当均匀化温度达到495℃以上时,合金容易出现过烧现象。采用485℃/24 h+495℃/8 h的双级均匀化处理制度,合金粗大相的溶解效率较高且不存在过烧迹象。  相似文献   

10.
采用金相、扫描电镜及能谱分析等方法,研究了6063合金半连续铸锭中的结晶相及铸态和均匀化态的显微组织,确定了6063合金的最佳均匀化制度。结果表明:6063合金半连续铸锭中存在大量非平衡凝固共晶体,其共晶相为Mg_2Si相、AlFeSi相、Al1_3Fe_4相;经570℃×7h均匀化后,非平衡共晶相基本回溶,基体组织均匀;570℃×7h为最佳均匀化制度。  相似文献   

11.
通过金相分析和拉伸试验等试验方法,分析了分级均匀化(第一级均匀化温度325℃,第二级均匀化530℃)制度对Mg-Gd-Y-Nd-Zr合金组织和力学性能的影响。结果表明,在分级均匀化处理制度中325℃×12 h+530℃×12h,这种处理不仅保证了共晶相的完全溶解,晶粒只有少许粗化的同时,拥有比单级均匀化更高的力学性能,拉伸屈服强度达到197.3 MPa,伸长率为3.42%。  相似文献   

12.
用万能材料试验机对合金的抗拉强度、屈服强度和伸长率进行测试,借助光学金相显微镜和扫描电镜观察合金均匀化热处理前后显微组织和成分变化,探索5059铝合金铸锭的最佳均匀化热处理工艺。结果表明,随着合金均匀化温度的提高,低熔点第二相快速溶解,但在480 ℃时均匀化时合金基体中出现过烧组织;均匀化温度为460 ℃时,保温24 h后,原铸态合金中β相较大程度地溶回到基体,同时不均匀组织和枝晶网状组织基本消除,继续延长保温时间,合金的组织没有明显变化,因此5059合金的最佳均匀化热处理工艺为460 ℃×24 h。  相似文献   

13.
借助光学显微镜的明暗场像、差示扫描量热法、扫描电镜及透射电镜等手段,研究了不同均匀化制度对6014铝合金的组织、富铁相转变、元素分布和弥散相均匀性的影响。结果表明,6014铝合金铸锭中存在枝晶偏析现象和非平衡共晶组织,合金元素含量波动较大,晶粒为等轴晶。铸锭中的第二相含量明显高于单级和双级均匀化态,由于第二相形态和分布不同,可分为α-AlFeMnSi、β-AlFeSi、Mg2Si和Q-AlCuMgSi相。采用560℃×4 h+540℃×6 h双级均匀化处理制度时,网状枝晶并未全部断裂,延长560℃一级均匀化保温时间至12 h时,较多的β-AlFeSi相转变为α-AlFeMnSi相。采用560℃×19 h单级均匀化处理时,枝晶基本由网状形态转变为链状形态。采用580℃×4 h+540℃×6 h双级均匀化制度时,弥散相α-AlFeMnSi分布较为均匀,延长580℃一级均匀化保温时间至12 h时,组织发生过烧,弥散相尺寸增大且在晶界周围富集。  相似文献   

14.
齐红海 《轻金属》2012,(7):57-60
利用光学显微镜(OM)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)、能谱分析(EDS)、X射线物相分析(XRD)和差示扫描量热法(DSC)研究了Al-7.6Zn-1.6Mg-1.9Cu铝合金的均匀化退火制度。结果表明:Al-7.6Zn-1.6Mg-1.9Cu合金铸态组织偏析严重,非平衡共晶相α(Al)+Mg(AlZnCu)2沿晶界呈连续网状分布,初始回溶温度为476℃,该合金在480℃均匀化退火时发生过烧;合金经不同均匀化退火后,非平衡共晶相发生不同程度的回溶,均匀化退火温度越高,时间越长,第二相回溶越好;该合金经420℃10h+470℃24h均匀化处理后,第二相回溶充分,且析出弥散分布的Al3Zr粒子,抑制后续固溶加工过程中的再结晶,可以作为合金合理的均匀化退火制度为420℃10h+470℃24h。  相似文献   

15.
采用导电率测试、显微组织观察研究了5454合金在单级(460~500℃)和双级(480、500℃×8 h+450℃)均匀化过程中第二相的析出过程及其对热轧板力学性能的影响。在460~480℃均匀化时,第二相粗化速度比较慢。在500℃均匀化时,第二相粗化速度比较快,相应的热轧板的力学性能也随着保温时间的延长而降低。在双级均匀化过程中,通过第一级均匀化来控制第二相尺寸,即调整热轧板的力学性能,然后在450℃较低的温度下进行二次均匀化以保证在较长的保温时间内第二相不发生严重的粗化,从而实现热轧板批量化生产时力学性能的稳定。  相似文献   

16.
研究了均匀化处理温度和时间对铸态Mg-4Sn-1Zn合金显微组织及力学性能的影响。结果表明,铸态Mg-4Sn-1Zn合金中存在严重的枝晶偏析,合金中分布着大量粗大相,主要为Mg2Sn和MgSnZn共晶相。在均匀化处理过程中,温度对合金成分均匀化效果的影响更大,而时间的影响相对较小。合金经过410℃×12h均匀化处理后,铸态组织中的粗大相全部溶入基体中,达到了最佳的均匀化效果,此时合金的显微硬度(HV)为60。因而确定Mg-4Sn-1Zn合金的最优均匀化制度为410℃×12h。  相似文献   

17.
对Al-4.5Cu-3.5Zn-0.5Mg铸态合金进行不同双级均匀化处理,采用扫描电镜、电子探针显微分析仪、差示扫描量热仪和光学显微镜等,研究了该合金的铸态组织及其在均匀化过程中的组织演变。结果表明:铸态组织主要由α-Al、粗大Al2Cu相以及少量AlZnMgCu、Al7Cu2Fe相组成,合金元素枝晶偏析严重。经470 ℃×12 h均匀化处理后,AlZnMgCu相已基本回溶至基体;第二级均匀化温度由490 ℃逐渐升高到520 ℃或者延长保温时间,Al2Cu相逐渐回溶至基体,合金元素分布趋于均匀。合金过烧温度为520 ℃,最佳双级均匀化制度为470 ℃×12 h+510 ℃×32 h,该制度与均匀化动力学计算结果基本一致。  相似文献   

18.
采用光学显微镜、X射线衍射仪、显微硬度计、材料试验机和电化学工作站等研究了轧制变形量和均匀化工艺对7055铝合金组织与力学性能和腐蚀性能的影响。结果表明,随着均匀化温度的升高,组织趋于均匀,第二相减少;最佳均匀化处理工艺为400℃×10 h+460℃×24 h,经均匀化处理后,合金组织主要由α-Al基体、MgZn2和Al2CuMg相组成,轧制处理并未改变合金相组成。同时,随着轧制变形量的增加,合金硬度先增大后减小,强度和耐腐蚀性能提高。变形量为40%时,合金硬度(HV5)达到峰值211.4;变形量为50%时,合金抗拉强度和屈服强度分别达到峰值618.6 MPa和610.3 MPa。  相似文献   

19.
通过金相组织分析,研究了不同均匀化温度和保温时间条件下铸态Mg-Gd-Y-Nd-Zr合金的显微组织,分析了均匀化温度和保温时间对铸态合金组织的影响。结果表明,经530℃保温24h均匀化处理后,晶界上的共晶组织几乎完全溶入基体中,只有一些黑色粒子相残留在晶内和晶界上,晶粒尺寸稍有粗化,因此Mg-Gd-Y-Nd-Zr合金最佳的均匀化工艺为530℃×24h。  相似文献   

20.
采用差热分析仪(DSC)、光学显微镜(OM)、扫描电镜(SEM)、透射电镜观察(TEM)、布氏硬度测试等方法研究了一种新型Al-6Zn-2.5Mg-0.6Cu(mass%)合金在单、双级均匀化过程的组织性能演变。结果表明:Al-6Zn-2.5Mg-0.6Cu(mass%)合金铸锭组织中存在着严重的枝晶偏析,由ɑ(Al)和T(Al-Mg-Zn-Cu)四元相组成的非平衡共晶相沿晶界呈连续链状分布;合金经470℃×24 h均匀化处理过后,铸锭晶界得到了明显的净化,晶界上原本大量存在的非平衡共晶相回溶入基体中;铸锭先在250℃×4C h下进行均匀化预处理有利于获得尺寸细小、均匀分布的含Mn、Cr析出相,提高合金的布氏硬度值,确定该新型合金铸锭的最优均匀化工艺为250℃×4 h+470℃×24 h。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号