首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 167 毫秒
1.
为研究水胶比、减水剂和矿物掺合料掺量对超高性能混凝土(UHPC)工作性能的影响以及水胶比、矿物掺合料和钢纤维掺量对UHPC力学性能的影响,分别进行净浆流动度试验和UHPC抗折、抗压强度试验。结果表明:提高水胶比和增加粉煤灰掺量可以改善浆体的流动性,但会降低UHPC的抗折强度和抗压强度;增加矿渣粉掺量可以在改善浆体流动性的同时,提高UHPC后期的抗折强度和抗压强度;随着硅灰掺量的增加,浆体的流动性不断降低,而UHPC的抗折强度和抗压强度呈现先上升后下降的趋势,当硅灰掺量为25%时,UHPC的强度达到峰值,抗折强度和抗压强度分别提高23.7%和32.0%;钢纤维掺量的增加会提高UHPC强度,当掺入2%的钢纤维时,UHPC的抗折强度与抗压强度分别提高39.7%和59.1%。综合考虑,建议硅灰掺量在20%~30%之内为宜,矿渣粉掺量不超过30%,粉煤灰掺量不超过20%,钢纤维掺量宜取2%。  相似文献   

2.
李剑锋 《广东建材》2022,(12):12-13+67
为更好地开展海砂UHPC配合比设计,研究了水胶比、砂胶比、硅灰、钢纤维等因素对海砂UHPC性能的影响,试验结果表明:水胶比越低,海砂UHPC强度越高;海砂UHPC的流动度随胶砂比增大而增大,抗压、抗折强度的变化规律为先增大后减小;随硅灰掺量增加,海砂UHPC的流动度、抗压强度、抗折强度均先增加后降低;随钢纤维体积掺量增加,海砂UHPC的流动度随之降低,抗压强度、抗折强度随之增加,其中钢纤维掺量对抗折强度影响极为显著。  相似文献   

3.
通过设计不同水胶比、钢纤维掺量下超高性能混凝土(UHPC)配合比,比较了T_(200)与min-v漏出时间和流动度的关系,发现T_(200)能较好反映UHPC黏度的变化,与流动度共同表征UHPC的流变性能。采用较短纤维替代长纤维,其质量比小于0.75时,随着短纤维的加入能降低UHPC的黏度;当超过0.75后,长短钢纤维的"墙体效应"作用对流动度的贡献作用降低明显。长短纤维搭配能提高UHPC的综合性能。随着纤维影响因素(k)的增加,流动度先增加后降低;k值的变化与抗压强度和抗折强度呈良好的线性关系。  相似文献   

4.
采用未经淡化处理的海砂配制超高性能混凝土(UHPC)对于岛礁建筑具有重要意义。通过水泥胶砂的力学性能和流动度试验确定了海砂UHPC的基准配合比,研究了钢纤维和PVA纤维对海砂UHPC力学性能和流动度的影响。试验结果表明:随着钢纤维体积掺量的增加,海砂UHPC的抗压和抗折强度提高,综合考虑力学性能和经济性,钢纤维最优体积掺量为1.5%。当钢纤维体积掺量为1.0%时,PVA纤维等体积完全取代钢纤维对抗压强度影响不大,抗折强度降低22.5%;当钢纤维体积掺量为1.5%时,混杂体积掺量0.75%以内的PVA纤维对抗压和抗折强度的影响不大,但流动性明显降低。  相似文献   

5.
使用破碎、筛分后的废弃石屑代替石英砂作为骨料制备超高性能混凝土(UHPC)。基于单因素分析试验,研究了各因素(水胶比、胶集比、减水剂掺量、钢纤维掺量)对石屑UHPC抗压强度、抗折强度及流动度的影响规律,考查了四种不同养生方式下石屑UHPC力学性能的变化。结果表明,当胶集比、水胶比、减水剂掺量、钢纤维掺量分别为0.63、0.2、2.1%和1.5%时,石屑UHPC的力学性能和工作性能最优,7d抗压强度最高为113.7MPa,抗折强度为35.2MPa;分析应力-应变曲线发现,掺加钢纤维不仅可以提高石屑UHPC的力学强度,还能显著提高石屑UHPC的韧性和残余抗压强度;经过水浴养护、干热养护和水浴+干热组合养护后,石屑UHPC的抗压强度分别提高了5.7%、27.1%和40.3%,但热养护对抗折强度影响不大。  相似文献   

6.
为了探究改善超高性能混凝土(UHPC)高温性能的措施,从力学性能、质量损失、超声检测等方面研究了纤维(不掺纤维、单掺钢纤维、混掺钢纤维与合成纤维)对UHPC高温性能的影响.结果表明:当纤维掺量增加时,UHPC的工作性与抗压强度均随之下降,抗折强度则先升后降;随着目标温度的升高,UHPC的残余抗压强度先升后降,损伤逐步加...  相似文献   

7.
超高性能混凝土是一种具有超强耐久性、超高强度的特殊混凝土。文章研究了不同钢纤维掺量对超高性能混凝土的工作性能和力学性能的影响,结果表明,钢纤维会导致细骨料UHPC流动性降低,并且流动性均随着掺量的增加而降低更多,同时钢纤维可以提高抗压强度和抗折强度,并均随着掺量的增加而增大。  相似文献   

8.
基于传统UHPC制备技术,优化原材料组分和配合比,配制出强度等级为120MPa的机制砂UHPC,开展不同材料掺量与配比对机制砂UHPC轴拉性能试验研究。结果表明:钢纤维的掺入能较好地约束机制砂UHPC变形和内部微裂纹的扩展,提高抵抗开裂能力和增强抗拉强度和拉伸应变,效果随钢纤维体积率的增加而逐渐增强,但在钢纤维掺量超过2%后增幅明显趋缓;机制砂UHPC抗拉性能随水胶比的增大呈先增大后减小的趋势,在水胶比0.18时,其抗拉强度和峰值应变最大分别为9.7MPa、2745.6με;适当增加机制砂UHPC中部分粗颗粒质量分数和石粉的掺量可以提高机制砂UHPC的抗拉性能。根据上述结果,机制砂UHPC的优选配合比设计为水胶比0.18,细度模数3.0,石粉含量5%,钢纤维体积掺量2%,可为后续机制砂UHPC力学性能深入研究与推广应用提供参考。  相似文献   

9.
文章研究了膨胀剂、塑性膨胀剂及其复掺对超高性能混凝土(UHPC)流动性、自收缩以及力学性能的影响.结果表明,膨胀剂会导致UHPC砂浆流动度降低,而塑性膨胀剂、膨胀剂与塑性膨胀剂(适当掺量)复掺则并不影响.  相似文献   

10.
针对超高性能混凝土(UHPC)胶凝材料用量大、非绿色化、成本高、自收缩大等问题,通过引入5~10 mm粒径的粗骨料,采用普通河砂代替石英砂,并优化钢纤维体积掺量,成功制备出了经济环境效益良好、性能优良的含粗骨料超高性能混凝土(UHPC-CA)。研究了粗骨料掺量对UHPC-CA工作性和力学性能的影响,并与UHPC性能进行了对比分析。结果表明:UHPC-CA的流动性能相比UHPC有所降低,粗骨料掺量为675 kg/m3的UHPC-CA能保持良好流动性能,但随着粗骨料掺量的增加,流动性降低的十分明显;UHPC-CA抗压强度、抗折强度低于UHPC,弹性模量则高于UHPC,不同粗骨料掺量UHPC-CA力学性能变化并不明显;UHPC-CA抗氯离子渗透性能和抗冻性能表现良好,但是不如UHPC优异;掺入粗骨料能够改善UHPC-CA的自收缩性能,相比UHPC,其早期自收缩率明显降低。  相似文献   

11.
高义 《建筑施工》2021,43(1):122-126
超高性能混凝土(UHPC)具有优异的力学性能、耐久性且能减轻结构自重、降低材料使用量,具有广阔的应用前景.但UHPC中大量采用超细硅灰与钢纤维等材料,成本较高.对此,拟采用稻壳灰取代一定量硅灰,选用聚丙烯纤维、玄武岩纤维与钢纤维混杂,通过测试UHPC的流动度、静动态力学性能、收缩变形与氯离子扩散系数,研究稻壳灰与混杂纤...  相似文献   

12.
异形钢纤维对超高性能混凝土增强增韧的影响   总被引:1,自引:0,他引:1  
以钢纤维掺量、类型和分布方式为变量,测试了掺异形钢纤维超高性能混凝土(UHPC)的直接拉伸性能和弯曲韧性,并采用显微镜对这种钢纤维的拔出通道和拔断截面进行了观测.结果表明:异形钢纤维对UHPC具有较好的增强增韧效果,相应试件的直接拉伸强度、断裂能及裂后承载力均大幅提高,且其掺量越大,提高幅度越显著;当异形钢纤维沿拉应力方向有序分布时,与随机分布相比,更有利于UHPC的增强增韧;相比于端钩型钢纤维,在相同掺量下,波纹型钢纤维的增强增韧效果更佳,其拔出通道更加曲折,还存在被拉直的现象,这主要是由于其与基体间存在更强的机械咬合力所致;此外,在拉拔过程中,2种异形钢纤维的断口邻近截面均出现了明显的颈缩.  相似文献   

13.
为优化超高性能混凝土的制备工艺,依据最紧密堆积原理,试验采用常规养护制度研究了钢纤维掺量、石英砂的细度及其级配等因素对所制超高性能混凝土性能的影响.结果表明:钢纤维的掺入可以明显提高超高性能混凝土的力学性能,当钢纤维体积掺量为2%时,所制试样28 d抗折抗压强度可达38.0 MPa、170.1 MPa.石英砂的级配可提...  相似文献   

14.
装配式结构的薄弱环节在于连接接头,采用套筒连接时,常见问题包括多个套筒灌浆时套筒难以同时灌满、空腔以及注浆完成后的回流、灌浆料强度与收缩等灌注质量难以控制、预制构件底部预留分腔的密封性不好。为降低这些问题导致的节点连接薄弱风险,文章提出使用含有钢纤维、超细石英砂的超高性能混凝土UHPC(Ultra high Performance Concrete)灌浆材料,通过重力式灌浆来进行钢筋与套筒的全断面连接,该方法提高施工安全性,保证浇筑质量可视化。通过57个大口径全灌浆套筒重力灌浆连接接头的单向拉伸试验,改变钢筋直径d、锚固长度la及灌浆料种类,研究连接方式的可行性。结果表明:试件符合《钢筋套筒灌浆连接应用技术规程》(JGJ 355—2015)和《钢筋机械连接技术规程》(JGJ107—2016)中Ⅰ级接头要求;拉伸过程中套筒始终处于弹性阶段,满足强度要求,有较高安全储备,重力式灌浆连接方式可行;由于钢纤维的桥接作用使灌浆料抗劈裂性能增强,采用含有钢纤维的UHPC灌浆料能进一步提高钢筋与灌浆料的黏结强度,减小钢筋的锚固长度。钢筋断裂破坏时临界锚固长度建议值为5.5d,较《钢筋套筒灌浆连接应用技术规程》要求的8d降低31.25%。  相似文献   

15.
超高性能混杂钢纤维混凝土力学性能试验   总被引:2,自引:0,他引:2  
采用工程上常用的2种不同长径比、不同强度的端弯型钢纤维和超细型钢纤维,通过立方体抗压试验和小梁抗弯试验,研究纤维体积率(体积分数)为2.0%时,端弯纤维和超细纤维混合比例对超高性能混凝土抗压强度、抗弯强度、延性的影响.结果表明:端弯纤维和超细纤维分别主导了超高性能混凝土强度和延性性能;随着超细纤维体积率增加,超高性能混凝土抗压强度、抗弯强度和弯曲韧性提高;随着端弯纤维体积率提高,小梁的延性增强;2种纤维混合,可以均衡地改善基体混凝土的相应性能;综合考虑各力学性能指标和经济性,端弯纤维与超细纤维体积率分别为0.5%和1.5%时为最佳配比.  相似文献   

16.
Abstract: Ultra‐high‐performance concrete (UHPC) is particularly suitable for application in aircraft‐impact‐resistant high‐rise buildings for combined load‐bearing and protective structures. The material provides very high—steel‐like—compressive strength, sufficient ductility, and fire resistance due to the addition of steel and polypropylene fibers. The following contribution is focused on two key aspects: hydro‐code simulations of structural UHPC walls which protect vertical escape and rescue routes and structural dynamic simulations of the global structure to investigate the impact resistance considering the sudden loss of external columns. A high‐speed dynamic material model for UHPC is obtained by implementing the results of a series of Hopkinson‐Bar experiments which were recently published. The strain‐rate‐dependent material properties are implemented in the established RHT‐Concrete‐Model for hydro‐code applications being furthermore extended by a tensile softening law for fiber‐reinforced UHPC. Based on this material model a series of aircraft‐engine impact experiments are configurated supported by three‐dimensional nonlinear hydro‐code prognosis simulations. With a total of six impact experiments on combined fiber‐ and rebar‐reinforced UHPC panels, all relevant damage states of the structural wall are obtained. The experimental results are compared to the hydro‐code prognosis simulations to validate the simulative approach and the material model for UHPC. In addition to the local impact behavior, structural dynamic numerical simulations of a global high‐rise structure are presented being focused on the effect of the sudden and notional loss of columns in coincidence with the aircraft impact load function.  相似文献   

17.
为了研究超高性能混凝土(UHPC)有腹筋梁的受剪性能,对7根UHPC梁进行了受剪性能试验,变化参数包括剪跨比、纵筋配筋率、配箍率、钢纤维掺量等。试验结果表明:UHPC有腹筋梁的破坏形态有弯曲屈服后的剪切破坏和剪压破坏,破坏时梁表面呈现斜向多条裂缝形态;箍筋可以提高UHPC梁开裂后刚度,钢纤维和箍筋均可以提高UHPC梁的变形能力和受剪承载力,足够的箍筋和钢纤维共同作用可以进一步提高UHPC梁的延性;配箍率增加,梁腹部会出现较密的短斜裂缝。提出了UHPC有腹筋梁受剪承载力计算模型,其中包括剪压区混凝土、斜裂缝处钢纤维、箍筋及纵筋销栓作用对于梁受剪承载力的贡献,模型计算值与试验值吻合良好。  相似文献   

18.
This research investigated a pavement system on steel bridge decks that use epoxy resin (EP) bonded ultra-high performance concrete (UHPC). Through FEM analysis and static and dynamic bending fatigue tests of the composite structure, the influences of the interface of the pavement layer, reinforcement, and different paving materials on the structural performance were compared and analyzed. The results show that the resin bonded UHPC pavement structure can reduce the weld strain in the steel plate by about 32% and the relative deflection between ribs by about 52% under standard axial load conditions compared to traditional pavements. The EP bonding layer can nearly double the drawing strength of the pavement interface from 1.3 MPa, and improve the bending resistance of the UHPC structure on steel bridge decks by about 50%; the bending resistance of reinforced UHPC structures is twice that of unreinforced UHPC structure, and the dynamic deflection of the UHPC pavement structure increases exponentially with increasing fatigue load. The fatigue life is about 1.2 × 107 cycles under a fixed force of 9 kN and a dynamic deflection of 0.35 mm, which meets the requirements for fatigue performance of pavements on steel bridge decks under traffic conditions of large flow and heavy load.  相似文献   

19.
为研究超高性能混凝土(UHPC)与高强钢筋的黏结性能,设计并制作69个试件,通过拔出试验研究UHPC强度、纤维体积率、纤维尺寸形状、保护层厚度、黏结长度、加载方式和黏结段位置对黏结性能的影响。结果表明:试件的主要破坏形态包括拔出破坏、钢筋拉断和劈裂破坏,高强钢筋与UHPC界面的黏结强度随UHPC抗压强度、纤维体积率和长径比以及保护层厚度的增加而增大;纤维的掺入对高强钢筋与UHPC黏结强度提高作用明显;当纤维体积率从1%增长至3%,长径比从35增加到100时,黏结强度分别提高了23%和16%;但纤维形状的变化对黏结强度没有明显影响;黏结强度随着UHPC抗压强度和保护层厚度的增大而显著增加,随着黏结长度增大而降低,当保护层厚度超过4倍钢筋直径时,增幅基本不变;当黏结段位于加载端时,受拉拔出加载试件黏结强度仅为受压加载的77%,黏结段越靠近试件中部,加载方式对黏结强度影响越小。基于试验结果,确定临界锚固长度计算式,提出高强钢筋与UHPC的黏结强度计算式,同时建立黏结应力-滑移本构关系模型。通过试验结果及公式计算结果对比可得,现有的普通混凝土黏结强度公式低估了高强钢筋与UHPC的黏结强度,建议的简化公式预测结果与试验结果吻合良好。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号