首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 31 毫秒
1.
铜渣以5%、10%、15%的比例取代水泥制备铜渣-水泥复合胶凝材料.研究铜渣对水泥基胶凝材料标准稠度用水量、凝结时间、净浆抗压强度、胶砂抗折与抗压强度的影响,并利用XRD、TG/DSC和SEM-EDS技术手段分析掺入铜渣后水泥基胶凝材料物相和微观形貌的变化.研究结果表明:铜渣掺入会使水泥胶凝材料的标准稠度用水量增加,凝结时间延长,一定程度上提高水泥胶凝材料的抗折、抗压强度;铜渣-水泥胶凝材料的主要水化产物和水泥胶凝材料类似,并有Fe(OH)3/Fe(OH)2凝胶生成.铜渣-水泥复合胶凝材料微观结构较水泥胶凝材料密实.  相似文献   

2.
研究了大掺量循环流化床固硫灰复合胶凝材料的物理力学性能,以及其早期水化放热特点和水化产物。研究结果表明:利用掺量为30%~60%固硫灰制备的复合胶凝材料满足32.5、42.5强度等级水泥标准;固硫灰复合胶凝材料的标准稠度比水泥的标准稠度大,且随着固硫灰用量的增加标准稠度增加,同时凝结时间变长;与P.O42.5水泥相比,循环流化床固硫灰复合胶凝材料水化的诱导期较长,水化放热速率明显变小,水化热较低。  相似文献   

3.
通过测定不同磷渣掺量时偏高岭土-矿渣地聚合物标准稠度用水量、凝结时间和抗压强度,研究磷渣对地聚合物性能的影响,并利用SEM、XRD分析碱激发地聚合物水化产物。结果表明:磷渣对复合地聚合物标准稠度用水量影响较小,当磷渣掺量由0增至50%,标准稠度用水量由0.34降至0.32;凝结时间随磷渣掺量增大而延长,磷渣掺量50%的试样初凝时间达84min;抗压强度随磷渣掺量增加先增大后减小,当磷渣掺量为25%时,28d抗压强度达到峰值65.5MPa。掺磷渣后地聚合物碱激发产物为无定形玻璃体,片层状产物与C-S-H凝胶交织在一起形成致密的结构。  相似文献   

4.
碱-磷渣-粉煤灰胶凝材料的性能与硬化浆体结构   总被引:2,自引:1,他引:2  
为充分利用磷渣和粉煤灰两种工业废渣生产高性能胶凝材料,研究了不同磷渣/粉煤灰配合比的碱-磷渣-粉煤灰胶凝材料性能,并用扫描电子显微镜和压汞仪分析了硬化浆体的细观结构和孔结构.结果表明:碱-磷渣-粉煤灰胶凝材料的凝结时间正常,在粉煤灰掺量为0~30 %(质量分数)范围内,随粉煤灰的掺量的增加,碱-磷渣-粉煤灰胶凝材料的凝结时间略有延长.与普通硅酸盐水泥相比,碱-磷渣胶凝材料的抗压强度较高,其3d和28d抗压强度分别可达到30.9MPa和98.8MPa,但其抗折强度相对较低.掺加粉煤灰后碱胶凝材料的抗压强度降低,而抗折强度提高.碱-磷渣-粉煤灰胶凝材料的耐蚀性和抗冻性能均显著优于硅酸盐水泥,其干缩比硅酸盐水泥的大.用部分粉煤灰取代磷渣粉可一定程度减小干缩.碱-磷渣-粉煤灰胶凝材料硬化浆体的结构非常致密,其孔隙率和平均孔径均小于普通硅酸盐水泥硬化浆体.  相似文献   

5.
对水泥、粉煤灰、矿渣粉、单一再生细粉及其与矿渣粉复合的胶凝材料的水化放热速率、放热量和水化过程各阶段的持续时间进行研究.试验结果表明,各类胶凝材料及单一再生细粉水化反应诱导前期出现第一放热峰的时间均为1.5 ~3.2 min,再生细粉-矿渣粉复合胶凝材料则为7~18 min;且后者水化反应减速期为50 h,比前者延迟了10 h,使其3d水化热值较高.另外,再生细粉-矿渣粉复合胶凝材料3d水化热值与7d抗压强度有一定正相关性,但对28 d抗压强度影响不大.通过分析材料组成对水化热和抗压强度的影响,说明基准再生细粉中SiO2含量高是导致其水化热及抗压强度均较低的原因,而矿渣粉具有后期增强效应.另外,助磨剂对再生细粉的水化热有一定影响.使用助磨剂处理技术与矿渣粉复配技术共同处理再生细粉,可以得到28 d抗压强度为50 MPa、再生细粉质量分数为10.5%且水化热介于水泥与矿渣粉之间的复合胶凝材料.  相似文献   

6.
采用磷渣以20%、40%和60%的比例取代水泥制备磷渣-水泥复合胶凝体系(PSC-X)以及用浓度分别为6 mol/L、8 mol/L、10 mol/L和12 mol/L的NaOH溶液制备碱激发磷渣胶凝体系(PSA-X).测试了两种体系的标准稠度用水(NaOH溶液)量、凝结时间、胶砂抗折强度和抗压强度,并结合XRD、TG-DSC和SEM-EDS等技术手段对其进行了物相组成及微观形貌的分析观测.研究结果发现:磷渣的掺入使PSC-X体系的标准稠度用水量降低了13.6%左右.而凝结时间却明显延长.增加NaOH溶液的浓度,PSA-X体系的标准稠度用液量也随之增加,且均高于PSC-X体系.凝结时间则较PSC-X体系明显缩短.适量掺入磷渣,能明显提高水泥胶砂试件的抗压强度;PSA-X体系的抗压强度发展良好,其强度值随激发剂浓度提高而呈下降趋势.PSC-X体系主要有Ca(OH)2、C-S-H凝胶、AFt和C4AHx等水化产物,而PSA-X体系则是Ⅰ型C-S-H凝胶,还有一定量的方沸石存在.  相似文献   

7.
将新鲜的硅酸盐水泥暴露于(20±2)℃,相对湿度为85%~90%的环境中,研究了硅酸盐水泥因暴露于湿空气中产生预水化而对水泥标准稠度用水量、水泥水化行为、水泥胶砂强度以及水泥与聚羧酸系减水剂(PCE)间相互作用的影响。结果表明:随着暴露时间的增长,水泥预水化速率不断降低,标准稠度用水量则先轻微减小后显著增加,预水化4 d的水泥具有最小的标准稠度用水量;预水化作用总体上降低了水泥水化温峰值及水泥水化放热速率,但对于预水化作用不超过10 d的水泥。在其水化200~500 min期间,预水化水泥的水化放热速率随预水化时间的延长而增大,对于预水化10 d的水泥,其水化放热速率甚至一度高于新鲜水泥,这可能会导致预水化水泥的异常凝结。此外,预水化作用不利于胶砂强度的发展,且对抗折强度的不利影响尤为显著。预水化作用还会影响PCE的分散效果,随着预水化时间的延长,PCE的分散性及其分散保持性先增大后减小,对预水化4 d的水泥分散效果最佳,其初始流动度达到新鲜水泥的136%,且120 min后的浆体流动度仍高达235 mm。PCE对预水化20 d和30 d的水泥无分散效果。  相似文献   

8.
马瑜  李北星  杨洋 《水泥》2020,(5):9-14
研究了工业化生产的改性磷石膏球对水泥标准稠度用水量、凝结时间、胶砂流动度、胶砂强度及水泥与减水剂相容性的影响,并与原状磷石膏和天然石膏进行对比,结合X-射线衍射、综合热分析等微观测试,分析了改性磷石膏球对水泥水化产物相、水化程度的影响.结果表明:采用改性磷石膏球配制的水泥,其初凝、终凝时间与掺配原状磷石膏水泥相比分别缩短217 min、227 min,1d、3d强度显著高于原状磷石膏配制的水泥,28d强度高于天然石膏配制的水泥,且标准稠度用水量、胶砂流动度、与减水剂的相容性等指标优于天然石膏配制的水泥.改性磷石膏球对水泥早期水化无不良延缓作用,且能提高水泥后期水化程度.综合对比上述三种石膏对水泥性能影响的各项指标,认为改性磷石膏球可以完全替代天然石膏作水泥缓凝剂.  相似文献   

9.
提钛尾渣是高钛型高炉渣提取合金后的残渣,与铝酸盐水泥的化学、矿物组成相近,具有较好的水化活性.分析不同掺量的提钛尾渣对硅酸盐水泥复合胶凝体系的凝结时间、水化放热、力学性能和水化产物的影响.结果发现,掺量20%提钛尾渣会导致复合胶凝体系早凝,水化初期的水化放热速率加快,累积放热量降低,1 d的水化产物中氢氧化钙减少,单硫型水化硫铝酸钙和三水铝石增多.不同掺量的提钛尾渣均会促进水泥早凝,降低力学性能.随着提钛尾渣掺量的增加,水泥的早凝不明显,力学性能有所增长,水化产物中出现CAH10和C3 AH6的特征峰.  相似文献   

10.
《应用化工》2022,(8):1999-2003
将煤气化渣粉磨后以20%的掺量配制煤气化渣复合胶凝材料,研究粉磨时间对煤气化渣复合胶凝材料细度、标准稠度用水量、凝结时间、复合胶凝材料砂浆力学特性以及干缩特性的影响。结果表明,复合胶凝材料的细度、标准稠度用水量、凝结时间、复合胶凝材料砂浆力学特性及干缩特性随煤气化渣粉磨时间的延长有明显变化,当粉磨时间达到70 min时,其各项性能均达到最优。煤气化渣复合胶凝材料可达到PC32.5水泥的强度标准,干缩特性低于PC32.5水泥砂浆。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号