首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
采用十八烷基三甲基溴化铵(OTAB)改性的氮化硼(BN)微粒和石墨烯纳米片(GNP)为导热填料,制备了系列环氧树脂(EP)/改性BN(BNOTAB)/GNP导热绝缘复合材料,研究了填料的种类和含量对复合材料导热性能、电绝缘性能及热稳定性能的影响。结果表明,经OTAB改性后的BN微粒能比较均匀分散于环氧树脂体系中;当m(BNOTAB)/m(GNP)=6∶4时(填料总含量为10%),复合材料的热导率达到0.48 W/(m·K),较纯环氧树脂材料提高了108.7%,而该复合材料仍保持优异的绝缘性能;TGA与DSC结果显示,BNOTAB/GNP填充微粒的加入可以提高环氧树脂复合材料的热稳定性。  相似文献   

2.
通过熔融共混法制备了两种不同型号石墨烯微片(GNPs)填加的GNPs/聚丙烯(PP)导热复合材料,研究了GNPs型号(KNG180,KNG150)和含量对其导热性能、密度、结晶性能和热稳定性能的影响。结果表明,KNG180 GNPs/PP复合材料密度高于KNG150 GNPs/PP,同时KNG180对提高聚丙烯结晶度的效果优于KNG150。随着石墨烯微片含量的增加,两种复合材料导热系数均明显增大,而且KNG180填充的复合材料导热性能明显优于KNG150;当KNG180的添加量为60%(质量分数)时,GNPs/PP复合材料的导热系数从纯聚丙烯的0.087 W/(m·K)提高到1.32 W/(m·K),提高了14倍多。石墨烯微片的加入显著提高了聚丙烯的热稳定性,当KNG180或KNG150的质量分数为10%时,聚丙烯达到最大热失重速率时的温度从345.1 ℃分别提高到374.6 ℃和397.9 ℃,但是当石墨烯微片超过一定含量时,热稳定性会下降。  相似文献   

3.
刘蓉  李良锋  陈果  高鹏飞  马雪  王玉平 《功能材料》2021,52(6):6006-6012
以氧化石墨烯(GO)为载体,醋酸锌为锌源,采用溶胶-凝胶法成功制备了氧化锌@石墨烯(ZnO@rGO)复合填料并利用傅里叶变换红外光谱(FTIR)、拉曼光谱仪(Raman)、扫描电子显微镜(SEM)对复合填料的结构及微观形貌进行表征.然后以ZnO@rGO作为导热填料,制备了系列环氧树脂(ZnO@rGO/EP)导热绝缘复合...  相似文献   

4.
采用液相共混与两次模压方法制备了热塑性聚氨酯弹性体(TPU)/石墨烯纳米片(GN)薄膜,探究了不同GN含量对TPU/GN薄膜力学性能、导热性能和热稳定性的影响。结果表明,当添加质量分数为2.0%GN时,TPU/GN薄膜的拉伸强度和弹性模量分别为60.8 MPa和10.4 MPa,相比纯TPU薄膜分别增长34%和96%; TPU/GN薄膜呈现典型的导热各向异性特征,质量分数为5.0%GN时,薄膜面内方向的导热系数为1.94 W/(m·K),而其垂直方向的导热系数为0.21 W/(m·K);GN的加入提高了TPU的热稳定性。  相似文献   

5.
选择粒径30μm和120μm的氮化硼微球(GBN)作为导热填料,通过超支化环氧树脂(HPEP)与GBN之间的π-π相互作用得到了超支化聚合物修饰的氮化硼微球(HPEP-GBN),通过共混制备了具有不同复配比例的环氧树脂复合材料(HPEP-GBN/EP)。调整小粒径填料的质量分数(Xs)研究了不同氮化硼微球的复配比例对复合材料流变行为和导热性能的影响,进一步分析了填料的形状和超支化聚合物的表面修饰对复合材料性能的影响。结果表明,当Xs=0.4时,HPEP-GBN/EP复合材料的黏度最低,具有比GBN/EP复合材料更优异的加工性能和导热性能。体系的填料质量分数可以达到80%,此时导热系数达到了5.28W/(m·K),是纯环氧树脂的31.06倍。此外,HPEP-GBN/EP复合材料还具有比GBN/EP更优异的力学性能和热稳定性、更低的介电损耗和热膨胀系数。  相似文献   

6.
氮化硼/环氧树脂绝缘导热材料的制备及性能表征   总被引:1,自引:1,他引:0  
将氮化硼(BN)粉末添加到环氧树脂(EP)中,制备了BN/EP绝缘导热复合材料,并对其热导率、抗拉强度、断面SEM(扫描电子显微镜)以及热失重进行分析,同时探究随着填充量的增加,复合材料的热导率和抗拉强度的变化趋势。结果表明:当20μm的BN的填充量为30%时,由其制备的复合材料的热导率在25℃时达到了0.92W/(m·K),抗拉强度为15.5MPa。并且随着BN填充量的增加,复合材料的热导率也逐渐增加,但抗拉强度逐渐降低。热失重分析说明随着BN填充量的增加,绝缘导热材料的起始分解温度并没有太大的变化,而复合材料的热失重量逐渐减少,分解温度逐渐升高。此外,随着添加BN粒径的增大,复合材料的热导率会增大,而抗拉强度却会减小。  相似文献   

7.
采用十六烷基三甲基溴化铵改性的氮化硼微粒(BN-CTAB)填充双马来酰亚胺-三嗪树脂(BT树脂)制备了BT/BN-CTAB导热绝缘复合材料。研究了改性氮化硼对BT树脂复合材料导热性能、热稳定性能和电绝缘性能的影响。结果表明,随着改性氮化硼的加入,复合材料热导率随之逐渐上升,体积电阻率略有下降,当加入15%改性氮化硼时,复合材料的热导率达到0.63W/(m·K),比BT树脂的热导率提高了186%,而该复合材料仍能保持优异的绝缘性能。改性氮化硼的加入有助于提高BT树脂复合材料的热稳定性,当氮化硼的含量为15%时,复合材料的热分解温度(失重5%时)较纯BT树脂材料提高了55.1℃。  相似文献   

8.
以聚丙烯为基材,六方氮化硼为填料,添加马来酸酐接枝聚丙烯,利用双螺杆挤出机制备导热复合材料。采用X射线衍射、扫描电子显微镜表征材料的微观结构,对复合材料的结晶性能、力学性能和导热性能进行分析。结果表明,马来酸酐接枝聚丙烯有利于增加聚丙烯与氮化硼的界面粘结,改善复合材料的结晶,增强复合材料拉伸强度和断裂伸长率,显著提高其热导率。氮化硼含量为30%(质量分数)时,添加马来酸酐接枝聚丙烯的复合材料热导率为0.512 W/(m·K),相对于只添加氮化硼的复合材料和聚丙烯,热导率分别提高1.08和2.3倍。  相似文献   

9.
采用熔融共混法制备BN纤维-石墨烯微片/聚丙烯(BN纤维-GNP/PP)高导热绝缘复合材料,结合有限元模拟、SEM、XRD、导热导电测试结果,探究了BN纤维含量和长度对BN纤维-GNP/PP复合材料导热绝缘性能的影响。结果表明:BN纤维-GNP/PP复合材料中BN纤维含量和长度的增加可增大GNP分布范围,增大BN纤维与GNP的接触概率;在GNP含量为7wt%、100 μm BN纤维含量为20wt%时BN纤维-GNP/PP复合材料的热导率较PP提高了4.2倍,同时电绝缘性略有提高。模拟结果表明,高含量100 μm BN纤维的加入使BN纤维-GNP/PP复合材料导热网络的构建趋于完整,局部热通量较低的区域减少。片状GNP与纤维状BN二相填料的"协同效应",使GNP和BN纤维分别作为"岛"和"桥"形成了一种特殊的"双网络"结构,BN纤维作为高导热"桥"阻隔了相邻GNP间导电通路的形成,从而提高了BN纤维-GNP/PP复合材料的导热绝缘性能。   相似文献   

10.
以石墨烯纳米片、聚四氟乙烯(PTFE)为原料,制备了石墨烯纳米片/聚四氟乙烯复合材料。研究了不同石墨烯纳米片含量(0,0.25%,0.50%,0.75%,1.00%,1.25%(质量分数))对复合材料导热性能、力学性能、摩擦磨损性能的影响。结果表明,随着聚四氟乙烯中石墨烯纳米片含量的增加,复合材料的微观结构趋于无序,其导热系数逐渐增大,导热性能逐步增强;当石墨烯纳米片含量为0.75%(质量分数)时,复合材料的抗拉强度和断裂伸长率最佳;当石墨烯纳米片含量为1.25%(质量分数)时,复合材料的摩擦系数最小,为0.195,磨损量最低,仅37 mg。磨损实验前后复合材料的碳结构发生了变化,磨损后复合材料的缺陷增大,石墨化程度大大降低,石墨烯纳米片/聚四氟乙烯复合材料具有良好的耐磨损性能。  相似文献   

11.
高导热绝缘材料在应对日益严峻的电子元器件领域的热管理问题中的应用广泛,以氮化硼改性高分子基导热复合材料已成为其中的研究热点之一。引入具有高导热系数的氮化硼纳米材料,不仅可以解决高分子材料热导率低的问题,还能使得所制氮化硼改性高分子导热复合材料的力学性能、电绝缘性能和热稳定性能得到提升。文中简要介绍了氮化硼的结构特性及各种制备方法,结合课题组的研究工作综述了六方氮化硼从功能化、取向分散、三维导热网络构建3个方面对高分子材料的改性,以及六方氮化硼和零维、一维、多元导热填料协同杂化高分子材料。最终,提出现阶段六方氮化硼改性高分子导热复合材料存在的主要问题,并对未来的研究方向进行了分析与展望。  相似文献   

12.
13.
以氮化硼(BN)和多层石墨烯(MG)为复合填料,通过溶液沉淀法,制备了聚丙烯酸基复合高导热界面材料。研究了填料含量和配比对复合材料导热性能的影响,实验发现随着BN和MG含量的增加导热性能先升高后降低,导热系数在BN∶MG=1∶0.3时最大(6.0 W·m~(-1)·K~(-1))。通过扫描电镜(SEM)分析复合材料的微观形貌,结果显示在BN∶MG=1∶0.3时,复合填料之间的协同作用发挥的最好,形成了致密的导热网络,因而有效的提高了复合材料的导热性能。该材料除了具有较高的导热性能外,还具有一定的柔性、可塑性和自修复性能,在一定条件下能够对热界面材料的内部损伤进行修复,从而大大延长热界面材料的使用寿命。这对于维持热界面材料的正常使用,确保设备内部热量的有效传出具有重要的意义。  相似文献   

14.
石墨烯作为一种二维晶体,由于其独特的热传递性能超过了石墨体的极限,成为人们关注的散热材料。柔性石墨烯/富勒烯复合薄膜是通过将富勒烯纳米粉末(10000目)与氧化石墨烯水溶性浆料复合,获得氧化石墨烯/富勒烯分散体,经高温碳化-石墨化而制成的。在这种全碳结构中,采用零维的富勒烯作为石墨烯片层之间的桥接构件来增强薄膜的机械强度以及热稳定性。且富勒烯有效的填充了二维石墨烯片层之间的间隙,提高了石墨烯薄膜跨界面的热传输效率。所得到的分层石墨烯/富勒烯复合薄膜具有很高的平面内导热系数最高可达1 008 W/(m·K)以及优异的跨界面热传输性能,z向导热率可达50 W/(m·K),良好的热稳定性能和抗拉强度3.25 MPa,热分解温度比石墨烯薄膜提高50℃。机械性能和热性能的结合有望使这种材料成为下一代商用便携式电子产品的散热装置。  相似文献   

15.
为了提高复合相变储能材料的导热性能,以N,N,N-三甲基-1-十六烷基溴化铵(CTAB)改性剂,氧化石墨烯(GO)经有机化改性、还原反应制得功能化石墨烯(CTAB-RGO),并作为强化传热载体对癸酸-十二醇(CA-LA)共混物(相变储能材料)进行导热增强改性,获得新型石墨烯导热增强相变储能材料。结果表明,CTAB-RGO的加入提高了CA-LA相变复合材料的相变潜热、导热系数、热稳定性能等。添加1%CTAB-RGO复合材料的相变潜热为164.7 J/g,相对CA-LA混合物提高了22%;导热系数为高达0.94 W/(m·K),导热增强率为184%。  相似文献   

16.
以水性环氧乳液(EP emulsion)及其固化剂为基体,加入石墨微片(GNs)制备防腐涂料,并分析防腐机制。通过盐雾时间测试发现GNs用量为EP emulsion中EP质量的4%时,其耐盐雾时间最长为240 h,同时其200 h划十字线的腐蚀距离低于市售Fe2O3/EP涂料。从GNs/EP emulsion复合防腐涂料漆膜表面的SEM图像可以发现,GNs分散的越均匀,涂膜的防腐能力越强。通过Tafel极化曲线发现,该含量漆膜具有腐蚀电位高和腐蚀电流小的特点,这是由GNs在环氧树脂中均匀分布形成微观电容提高树脂介电常数,进而提高漆膜电荷储存能力,减弱电子移动能力而实现的,并借助Nyquist曲线及漆膜断面的SEM图像,建立等效电路及石墨微电容防腐模型。研究发现,GNs/EP emulsion防腐涂料的防腐机制是通过借助GNs的化学稳定性对水和氧气的物理隔绝作用以及通过微电容的形成减弱电子移动能力的电化学作用共同实现。  相似文献   

17.
采用机械砂磨剥离与非共价键表面修饰相结合的方法,制备了左旋赖氨酸(Lys)功能化接枝氮化硼纳米片(Lys@BNNS),将其作为填料通过液相混合和热压方式得到热塑性聚氨酯(TPU)复合材料。采用红外光谱、热失重分析仪、X射线衍射仪、X射线光电子能谱仪、扫描电子显微镜及透射电子显微镜表征了Lys@BNNS的结构与形貌特征;采用导热仪和红外热成像仪探讨了不同填料含量对复合材料导热性能和散热速率的影响。当填料质量分数达到5%时,Lys@BNNS/TPU复合材料的热导率比纯TPU增加了160%,散热速率提高了100 s。这对于提高高度集成化电子产品的可靠性和使用寿命具有重要的意义。  相似文献   

18.
以氮化硼(BN)和多层石墨烯(MG)为复合填料,通过溶液沉淀法,制备了聚丙烯酸基复合高导热界面材料.研究了填料含量和配比对复合材料导热性能的影响,实验发现随着BN和MG含量的增加导热性能先升高后降低,导热系数在BN:MG=1:0.3时最大(6.0 W·m-1·K-1).通过扫描电镜(SEM)分析复合材料的微观形貌,结果显示在BN:MG=1:0.3时,复合填料之间的协同作用发挥的最好,形成了致密的导热网络,因而有效的提高了复合材料的导热性能.该材料除了具有较高的导热性能外,还具有一定的柔性、可塑性和自修复性能,在一定条件下能够对热界面材料的内部损伤进行修复,从而大大延长热界面材料的使用寿命.这对于维持热界面材料的正常使用,确保设备内部热量的有效传出具有重要的意义.  相似文献   

19.
采用导电高分子聚苯胺链段作为导电通路,通过添加少量苯胺单体对氧化石墨烯(GO)进行接枝、聚合,再通过氢碘酸还原的方式制备出聚苯胺修饰石墨烯薄膜材料。采用红外光谱、紫外可见吸收光谱、扫描电镜及透射电镜对复合物的官能团及结构变化属性进行表征分析,使用方块电阻仪对复合物的电学性能进行了测试与表征。结果表明:石墨原料经改进的Hummers法制得的GO含有大量的含氧官能团,以及较大的层间距。采用氢碘酸对聚苯胺修饰的GO进行还原处理,得到了具有较好导电能力的聚苯胺/石墨烯薄膜,其方块电阻只有12Ω/。  相似文献   

20.
聚丙烯(PP)薄膜已广泛应用于薄膜型电容器和静电储能元件,但较低的介电常数限制了其进一步应用。本文以PP为基体材料,通过掺杂低含量的六方氮化硼(h-BN)二维纳米片,制备出聚丙烯/氮化硼纳米复合薄膜,以提高PP介电常数。其中一个关键因素是调控两相界面,以获得h-BN在PP中的良好分散和与基体的紧密结合。本论文通过超声剥离的方式制备少层氮化硼纳米片(BNNSs),并采用盐酸多巴胺(PDA)的非共价聚合反应进行包覆,得到了BNNSs@PDA。通过XRD、FT-IR和TEM表征了BNNSs@PDA的形貌,验证了核-壳结构的直径约150~200 nm,最小厚度约3 nm,有机PDA壳层平均厚度约为7nm。将BNNSs@PDA与PP复合得到薄膜,通过SEM、耐压测试仪、阻抗分析仪等设备对薄膜的微观结构、击穿性能和介电性能进行了研究。结果表明:在BNNSs@PDA的含量仅为1%(质量分数)时,复合材料的介电常数提高至5.62,损耗仅为0.006,理论储能密度高达7.42 J/cm~3,是纯PP薄膜的4.8倍。以上结果表明:BNNSs@PDA与PP良好的界面、二维纳米片在面内的取向分布,有效阻碍了外电场下电树枝的扩展,抑制了载流子的传输作用,同时引入了界面极化,从而有效提高了复合薄膜的介电和击穿性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号