首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
钢渣水化活性差,体积安定性不良限制了其作为辅助性胶凝材料的应用,但钢渣具有很好的碳酸化活性。本文在对钢渣进行预处理的过程中通过调整CO2浓度及碳酸化时间,调控钢渣的碳酸化程度,分析了碳酸化对钢渣微观结构及固碳效果的影响,同时评价了碳酸化钢渣作为辅助性胶凝材料的可行性。结果表明:含30%(质量分数)钢渣的水泥砂浆试块3、28 d抗压强度较未掺钢渣水泥砂浆分别降低了43.2%和30.0%,净浆试块经压蒸试验后由于膨胀过大而溃散;CO2浓度对钢渣的固碳量有显著的影响,高浓度(体积分数为99.9%)CO2进行碳化养护3 min时钢渣固碳量就达到了3.67%。钢渣的体积安定性与碳酸化程度呈正相关,而过度碳酸化处理会降低其水化活性,掺加30%(质量分数)碳酸化预处理3、10 min钢渣的砂浆3 d抗压强度较掺加30%原始钢渣的砂浆分别提高了28.3%和15.8%。  相似文献   

2.
《粉煤灰》2016,(4)
针对钢渣和脱硫粉煤灰安定性不良以及大量堆存引起严重生态环境问题的现状,试验以钢渣和脱硫灰为主要原料,通过水化-碳化-水化养护试块。结果表明:脱硫灰掺加量(质量)分别为ω=80%、60%、40%、30%、20%、10%时,经过水化-碳化-水化后试块的抗压强度分别是9.7 MPa、12.59 MPa、19.90 MPa、23.50 MPa、41.91 MPa、81.40 MPa,且压蒸后无裂纹、掉角、开裂和粉碎现象。通过SEM、XRD、TG-DTG等现代测试手段对它们的微观形貌、矿物组成进行分析。水化24h后生成水化硅酸钙、Ca(OH)2等水化产物。这些水化产物以及未参加反应的f-Ca O,C2S和C3S等矿物均可与CO2气体发生化学反应。碳化养护2h后,抗压强度值提升,再次水化后强度得到再一次提升。  相似文献   

3.
钱春香  张霄  伊海赫 《硅酸盐通报》2020,39(8):2363-2371
目前钢渣排放量、库存量大,但利用率不高,关键是安定性未能解决.本文研究提出了通过微生物矿化技术提升安定性和强度,研究了不同掺量微生物对钢渣中主要矿物相碳化反应速率的影响,测试了微生物掺量和钢渣粉比表面积对试件压蒸线性膨胀率和强度的影响,通过MIP和SEM分析试件孔隙率和微观形貌,并对微生物改性钢渣胶凝材料机理进行分析.结果 表明,微生物能提高钢渣中游离氧化物和硅酸盐矿物相碳化反应速率,提高矿化产物的强度.要使试样压蒸线性膨胀率降低至0.5‰以下,采用微生物添加剂后,试验所用钢渣粉比表面积可由565 m2/kg降低至360m2/kg.钢渣中掺入微生物可促进碳化过程中矿物相离子溶出和碳酸盐矿物生成,降低试件孔隙率,密实基体结构,从而提高钢渣胶凝材料试件的强度.微生物-钢渣胶凝材料制品强度可达40 MPa以上,其他物理性能均符合国家标准,在实际道路铺装工程应用中体积稳定性好,无泛碱现象,且利润优势显著,应用前景广阔.  相似文献   

4.
应用碳酸化技术对比表面积为287m2/g的钢渣粗粉进行预养护,进行制备大掺量钢渣水泥的试验研究.实验结果表明:(1)钢渣粗粉在温度74℃,相对湿度70%~90%,CO2气体浓度30%~40%的条件下,碳酸化养护270min后其w(f-CaO)由5.67%降至0.34%;钢渣中的大部分f-CaO转化为CaCO3晶体,而C3S及C2S基本未参与碳酸化反应.(2)由于碳酸化作用,钢渣中Ca的浸析浓度明显降低,钢渣的早期水化速度加快、早期水化活性提高.(3)应用碳酸化预养护后的钢渣粗粉制备的钢渣水泥,钢渣粗粉掺入量可达40%,3 d强度达20.6 MPa,28 d强度达44.7 MPa,并且压蒸安定性良好.  相似文献   

5.
钢渣碳化机理研究   总被引:11,自引:1,他引:10  
通过测定钢渣碳化反应中的温度变化,分析钢渣碳化产物的矿物相,以及测试碳化前后钢渣的热重及孔结构变化,研究钢渣碳化的放热性能和结构组成变化。结果表明:钢渣水化24h累计放热量为30J/g,而钢渣试样碳化1h的累计放热总量达95J/g。碳化后的钢渣试样中有碳酸盐矿物生成,每kg钢渣约可固化储存CO2气体121.8g,并且试样的孔隙率由碳化前的21.76%降至13.34%,抗压强度由碳化前的6.69MPa提高至42.14MPa,且碳化后试样压蒸安定性合格。  相似文献   

6.
碳酸化预养护钢渣制备钢渣水泥的性能试验研究   总被引:2,自引:0,他引:2  
应用碳酸化技术对比表面积287m2/kg的钢渣粗粉进行预养护,从而制备大掺量钢渣水泥,并对其性能进行了试验研究。试验结果表明,碳酸化钢渣的fCaO含量降低,水化活性提高。碳酸化预养护钢渣较未碳酸化的钢渣制备的钢渣水泥强度及安定性有显著提高;钢渣水泥的密度、比表面积、标准稠度用水量和凝结时间等基本物理量与碳酸化钢渣粗粉的掺入量有关;在满足水泥强度和压蒸安定性的条件下,碳酸化钢渣粗粉的掺量可达50%。  相似文献   

7.
宋强  胡亚茹  李婷  赵胜东 《硅酸盐通报》2015,34(7):1762-1768
通过在硅酸盐水泥中加入不同掺量矿渣粉以及不同掺量和细度的钢渣粉,研究了矿渣和钢渣对水泥强度,孔结构和压蒸安定性的影响.实验结果表明:矿渣与熟料的比例是控制特定钢渣掺量的水泥28 d抗压强度的决定性因素,熟料和矿渣按照1:1混和的水泥具有最高强度,影响水泥28 d最高抗折强度则是矿渣掺量.加入钢渣增大了水泥的孔隙率,而加入矿渣则可以减少试块孔隙率;矿渣能够明显细化浆体的孔结构,钢渣矿渣水泥的28 d抗压强度主要受到大于50 nm孔隙含量的影响.水泥压蒸膨胀率随着钢渣掺量增加而增加,矿渣能够显著改善钢渣水泥的压蒸安定性.  相似文献   

8.
钢渣的膨胀相及其对水泥体积稳定性的影响   总被引:1,自引:0,他引:1  
杨军 《水泥》2009,(10):6-9
借助XRD、DTG和SEM分析了钢渣中石灰相和RO相的结构形态、化学组成和水化条件,并讨论了二者与水泥体积稳定性的关系。分析结果表明:石灰相和RO相与水反应的总体能力偏低,且二者的微晶与水反应的能力有强有弱,具有不均一性;石灰相在沸煮条件下就可以水化,RO相在压蒸条件下才能水化,因此,石灰相是影响水泥的沸煮安定性和压蒸安定性的主要原因,RO相只影响水泥的压蒸安定性,且不是引起水泥压蒸安定性不良的主要原因;钢渣水泥的体积安定性不仅与钢渣中石灰相和RO相的化学组成有关,而且还和钢渣的掺量有关。  相似文献   

9.
钢渣存在安定性不良的问题,将钢渣应用于水稳层,会存在钢渣分布不均匀,使试样出现膨胀开裂的现象。通过研究发现,对钢渣基胶凝材料进行碳化处理可以提高其体积稳定性,粒径较细的钢渣能够增大碳化反应面积,有利于提高碳化程度。本文对≥200目钢渣进行碳化处理,研究碳化时间和碳化温度对预碳化钢渣基胶凝材料的体积稳定性影响,并对其碳化机理进行探究;与建筑再生骨料制备水稳层,对其进行无侧限抗压强度和抗冻性测试。结果表明,随着碳化时间的和温度增加,预碳化钢渣基胶凝材料压蒸膨胀率逐渐降低,活性先增高后降低。在常压下,碳化温度为60 ℃,碳化时间为1.5 h的钢渣基胶凝材料相对活性最高。  相似文献   

10.
尚建丽  赵世冉  李翔 《硅酸盐通报》2012,31(6):1611-1616
通过对钢渣细集料各粒级压蒸粉化率的测定,分别进行了不同钢渣掺量砂浆试块的压蒸稳定性试验,采用X射线衍射(XRD)测试技术,分析了钢渣细集料中白、褐色颗粒对其体积稳定性的影响.研究表明:当钢渣内含有白色颗粒且陈伏期较短时,钢渣细集料的稳定性应以0.6~1.18衄钢渣压蒸后过0.6mm筛得出的粉化率并结合所配制的砂浆体积稳定性作为评价指标;在满足钢渣砂浆稳定性的前提下,不同粒级钢渣细集料替代天然砂制备钢渣砂浆时的掺量不同.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号