共查询到17条相似文献,搜索用时 77 毫秒
1.
为改善玄武岩纤维(BF)与水泥基材料的界面结合作用,分别采用质量分数为0.4%、0.8%和1.2%的γ-氨丙基三乙氧基硅烷(CG550)、γ-甲基丙烯酰氧丙基三甲氧基硅烷(CG570)和乙烯基三乙氧基硅烷(Z6518)的三种硅烷偶联剂对玄武岩纤维进行表面处理,研究改性后纤维及其增强混凝土的力学性能影响规律。实验结果表明,随着CG550溶液浓度增加,改性玄武岩纤维及其水泥基复合材料力学性能整体呈上升趋势,当CG550溶液浓度为1.2%时,纤维及其增强水泥基材料有最佳的力学性能;随着CG570溶液浓度增加,改性后玄武岩纤维的断裂强度先升高后降低,断裂伸长率基本不变,纤维断裂强度最高提升5.8%,其水泥基复合材料的力学性能随溶液浓度增加呈上升趋势,抗折强度最高提升24.4%,抗压强度最高提升7.3%;随着Z6518溶液浓度上升,改性后玄武岩纤维的断裂强度逐渐降低,但断裂伸长率逐渐增高,表现出较好的延性;其水泥基复合材料力学性能随浓度变化无明显改善。综合考虑实验结果,三种硅烷偶联剂对纤维的改性效果好坏依次为CG570、CG550、Z6518。 相似文献
2.
为提高玄武岩纤维(BF)与水泥基体的界面结合力和桥接作用,分别采用HCl溶液(0~2.0mol/L)和NaOH溶液(0~2.0mol/L)对BF表面进行刻蚀糙化处理,研究纤维表面处理对BF增强水泥基复合材料的力学性能影响规律。结果表明:随着HCl溶液浓度增加,BF/水泥复合材料抗折强度与弯曲强度均先增加后降低,挠度呈现缓慢增加趋势,而抗压强度变化幅度较小;当HCl溶液浓度为1mol/L时,BF/水泥复合材料的强度与韧性最佳;碱处理BF后,BF/水泥复合材料的力学性能随NaOH浓度增加而显著降低,且复合材料韧性无明显改善;BF经HCl溶液腐蚀后的质量保留率变化规律与NaOH溶液腐蚀后的变化规律接近,而经HCl溶液腐蚀后BF强度保留率大于NaOH溶液腐蚀后的BF强度保留率。 相似文献
4.
超高韧性纤维增强水泥基复合材料(ECC)因其出色的高韧性及多缝开裂特性备受关注,然而一直以来因配比中进口PVA纤维的使用导致高昂的价格限制了其在工程中的大规模应用。为了进一步降低成本及实现原材料的本土化,研究低成本国产PVA纤维对ECC力学性能的影响十分必要。通过单轴拉伸、压缩、三点抗弯及单裂缝拉伸等宏观、细观试验研究两种国产低成本PVA-ECC的力学性能,并借助纤维分散性试验及SEM,探讨纤维的分散等微观特征。结果表明,低成本国产纤维在基体中具有良好的分散性,尽管其纤维桥接余能、最大桥接应力及PSH指数低于进口纤维,但均能满足能量与强度准则,即便相对较差的纤维A试件的3 d、7 d及28 d的极限拉伸应变也可达到2.52%、3.34%及3.08%,可实现良好的应力硬化行为及饱和多缝开裂特性,满足ECC的使用要求。 相似文献
5.
使用国产基体材料并利用铁尾矿砂细骨料替代天然砂,掺入长度为12mm的PVA纤维,制备铁尾矿砂细骨料PVA纤维水泥基复合材料(PVA-ECC),并通过实验研究了PVA纤维体积率对PVA-ECC性能的影响。实验结果表明:PVA-ECC的工作性能和基本力学性能稳定,制备工艺满足要求。PVA纤维体积率对提高PVA-ECC抗压强度的作用不明显,体积率在1.6%~2%时,PVA-ECC破坏后的整体性较好,体积率为2%时最佳,但过量的PVA纤维掺入会降低其抗压强度。PVA纤维体积率对PVA-ECC韧性的影响显著,体积率在1.6%~2%时,韧性明显增加,体积率为2%时的效果最佳,其极限荷载和抗弯强度达到峰值,弯曲韧性指标显著增大,试件破坏前出现多缝开裂现象,呈现韧性破坏特征;通过韧性指数法判定PVA-ECC为韧性材料。 相似文献
6.
为了促进聚乙烯醇(PVA)纤维增强水泥基复合材料(PVA-ECC)在热环境工程领域中的应用,通过狗骨试件拉伸试验,研究了高粉煤灰掺量的PVA-ECC热处理后的力学性能变化;采用单纤维抗拉试验、单纤维拔出试验以及单裂缝拉伸试验研究了PVA-ECC性能提升的机制。结果表明:在不高于200℃的热处理后,PVA-ECC仍能实现多裂缝开裂,相比20℃,50、100、200℃热处理后的PVA-ECC复合材料的拉伸力学性能提高,其幅度为100℃> 50℃> 200℃;纤维强度不是PVA-ECC抗拉性能变化的控制因素,适当的温度处理提高了纤维与基体的化学黏结力和摩擦力,从而提高了纤维的桥接作用和裂缝的余能,进而提高了PVA-ECC的抗拉性能和摩擦耗能能力。PVA-ECC性能变化的机制分析为PVA-ECC工程设计提供了良好的理论基础。 相似文献
7.
对3种不同水灰比(0.2,0.4,0.65)形成的聚乙烯醇(PVA)纤维增强水泥基材料,通过三点弯曲试验,结合表观裂缝形状和裂缝处PVA纤维形态,研究了水灰比对材料弯曲性能的影响;通过对断裂面处纤维表面、纤维嵌入端和纤维拉断或拔出端的SEM影像分析,从微观层面研究了水灰比对PVA纤维-基体界面显微结构的影响。弯曲试验结果表明:随着水灰比增加,跨中部位裂缝数量明显增加,裂缝处拔出的纤维数量增多而拉断的数量减少,材料的弯曲韧度和开裂强度到弯曲强度的增强幅度提高。界面显微结构表明:随着水灰比增加,基体结构由致密变疏松,界面粘结力减弱,桥接裂缝的PVA纤维状态由瞬间猝断转变为滑动拔出且表面有轻微刮削,纤维对材料增强增韧的效率显著提高。 相似文献
8.
为了探究碳酸钙晶须对钢纤维/PVA混杂纤维增强高延性水泥基复合材料(HyFRHDCC)力学性能的影响,利用2%体积掺量的廉价碳酸钙晶须替代部分纤维,研究了不同纤维掺量HyFRHDCC的压缩性能和拉伸性能,利用扫描电子显微镜观察了HyFRHDCC的微观结构。研究结果表明,引入碳酸钙晶须能够提高HyFRHDCC的初裂拉伸应变和峰前压缩韧性;在1.5%PVA+0.25%钢纤维HyFRHDCC中掺入2%碳酸钙晶须可以改善材料的拉伸性能;当PVA纤维减少至1%时,HyFRHDCC出现了明显的应变软化行为。微观形貌分析发现,碳酸钙晶须能够通过裂纹偏转、晶须拔出以及裂缝桥联等微观机制改善HyFRHDCC的应变硬化行为。 相似文献
9.
对以平纹织物为增强体的混杂纤维复合材料(HFRP)的刚度和强度进行研究。设计热压工艺并制备7组具有不同混杂比的玄武岩纤维-碳纤维(玄-碳)混杂增强环氧树脂基复合材料试样进行拉伸试验。基于平纹织物的结构特征,对传统混合定律加以修正,提出以平纹织物为增强体的HFRP刚度估算模型。基于HFRP层合板的破坏机制,提出材料仅发生一次破坏的临界混杂比,并分成三个混杂比范围给出强度估算模型。最终以体现分散度的混杂效应系数对估算结果加以修正。结果表明:计算值与试验值近似,预估模型计算所得临界混杂比与试样拉伸试验时的应力-应变曲线分析结果相符,模型可为今后的实际应用提供理论依据。本文提出的预估方法可以反应混杂比和分散度对平纹织物为增强体的HFRP强度和刚度的影响,扩展了混合定律的应用范围。 相似文献
10.
将玄武岩纤维置于混杂铺层的压缩侧,研究了碳纤维-玄武岩纤维混杂增强环氧树脂基复合材料的弯曲性能及混杂比对其弯曲性能的影响。通过对试样进行三点弯曲试验得到了材料的弯曲性能,并通过扫描电子显微镜观察材料的失效模式。与纯碳纤维增强环氧树脂基复合材料相比,当混杂比为16.7%和33.3%时,混杂复合材料的弯曲强度明显提升,弯曲强度分别提高12.4%和15.2%,但是其弯曲模量随着混杂比的提升而降低。混杂后的材料及玄武岩纤维增强环氧树脂基复合材料的失效位移都高于碳纤维增强环氧树脂基复合材料,断裂韧性明显提升。从侧面观察可以发现不同铺层在压缩侧、拉伸侧和中间层有不同的失效形式。 相似文献
11.
确定了玄武岩-聚乙烯醇混杂纤维水泥基材料的最优配合比,将玄武岩-聚乙烯醇混杂纤维水泥基材料与普通C40混凝土在相同条件下进行耐久性对比实验。结果表明,玄武岩-聚乙烯醇混杂纤维水泥基材料在300次冻融循环后,质量损失不到1.5%,而在不到150次冻融循环中,普通C40混凝土的质量损失已接近5%;混杂纤维水泥基材料28和56 d的渗透系数为普通C40混凝土的53%和26%,混杂纤维水泥基材料具有较强的抗渗透能力,抗渗性随着龄期增长逐渐增强;碳化时间<28 d时,混杂纤维水泥基材料的碳化深度大于普通C40混凝土,但碳化时间56 d时,混杂纤维水泥基材料的碳化深度为普通C40混凝土的90%;混杂纤维水泥基材料28和56 d的电通量分别为普通C40混凝土的65%和49%,混杂纤维水泥基材料的抗氯离子性能明显高于普通C40混凝土。玄武岩-聚乙烯醇混杂纤维水泥基材料的各项耐久性指标均优于普通C40混凝土。 相似文献
12.
连续玄武岩纤维增强环氧树脂基复合材料抗冲击性能研究 总被引:1,自引:0,他引:1
制备了连续玄武岩纤维增强的环氧树脂基复合材料靶板,并进行了抗冲击性能测试,研究了影响其抗冲击性能的主要因素及抗冲击机理.结果表明,表面处理会使复合材料抗冲击性能下降;而降低织物面密度、提高纤维体积含量可以使复合材料抗冲击性能得到提高.复合材料靶板的主要能量吸收形式为靶板局部变形、分层和纤维拉伸、剪切断裂及纤维拔脱. 相似文献
13.
采用聚乙烯醇(PVA)交联对洋麻(KF)增强聚丙烯(PP)、棕榈(PF)增强聚丙烯(PP)复合材料进行改性,通过模压成型工艺制备KF/PP和PF/PP复合材料。研究不同交联方法对复合材料的结构和性能的影响,采用SEM、DMA等技术研究了改性对复合材料的界面结合及力学性能影响。结果表明:PVA协同偶联剂交联改性对天然纤维/PP复合材料的综合改性效果最好,当用5%PVA+3%偶联剂对KF/PP改性时,KF/PP复合材料的弯曲强度提升25.2%,弯曲模量提升35.49%,剪切强度提升28%,分别达到了50.90 MPa、5.76 GPa、5.4MPa。当用5%PVA+2%偶联剂对PF/PP改性时,PF/PP复合材料的弯曲强度提升31.46%,弯曲模量提升27.07%,剪切强度提升21.75%,分别达到44.33MPa、2.32GPa、5.18MPa。改性后KF/PP、PF/PP复合材料的含水率分别下降了46.89%、10.63%,吸水率分别下降了8.57%、6.12%。KF/PP改性后储能模量提高20.93%,PF/PP改性后Tg值由90.1℃上升到113.8℃。SEM表明:PVA协同偶联剂交联改性有效改善了纤维与PP间的粘结,纤维与PP间的界面结合得到改善。 相似文献
14.
采用自制稀土改性剂改性玄武岩纤维(La-BF)布增强双酚A型二氰酸酯(BADCy)制备了La-BF/BADCy复合材料。采用SEM和FTIR分析了改性对BF表面产生的影响,TG分析研究了改性对BF/BADCy复合材料热稳定性的影响,使用电子万能试验机研究改性对不同质量分数的BF/BADCy弯曲性能的影响,通过阻抗分析仪分析了改性对La-BF/BADCy复合材料介电性能的影响。结果表明,改性减少了BF的表面缺陷,并引入了结晶状凸起,有利于提高BF/BADCy复合材料的界面性能;通过改性提高了BF/BADCy复合材料的热稳定性,初始分解温度提高了145℃;当BF的质量分数为12wt%时,改性使BF/BADCy复合材料弯曲模量提高到4.19 GPa,弯曲强度达到110 MPa以上。在1 MHz~3 GHz范围内,La-BF/BADCy复合材料的介电常数稳定在1.9左右。因此稀土改性是一种能够有效提高BF/BADCy复合材料弯曲性能、热稳定性及介电性能的表面改性方法。 相似文献
15.
利用层内混杂的方式制备碳/芳纶纤维混杂纬编双轴向多层衬纱织物,通过对材料进行拉伸、三点弯曲等实验研究该织物增强复合材料的力学性能及混杂比对其力学性能的影响。结果表明,按照一定的混杂比加入芳纶纤维后复合材料的拉伸性能提高,表现出积极的混杂效应。由于延伸性好的芳纶纤维的加入,使复合材料的拉伸断裂伸长率明显提高,材料破坏模式出现了完全脆性断裂模式(C12材料破坏形式)和“扫帚”形纤维断裂模式(C8A4,C6A6材料破坏形式)。此外,按照一定的混杂比加入芳纶纤维也有效改善了碳纤维增强复合材料的破坏韧性,碳/芳纶纤维混杂MBWK织物增强复合材料的弯曲强度和弯曲模量随混杂比的提高而呈下降趋势,当复合材料中芳纶含量从42%(体积分数,下同)(C6A6)到59.2%(C4A8)的变化过程中,弯曲强度和弯曲模量的降低率较高。0°试样在混杂比为59.2%(C4A8)时,弯曲挠度最大,达到7.49 mm,远高于纯芳纶纤维或纯碳纤维增强的复合材料。所有90°混杂复合材料试样的弯曲挠度均高于纯芳纶纤维或纯碳纤维增强的复合材料,表现出积极的混杂效应。 相似文献
16.
利用激光对玻璃纤维、玄武岩纤维和碳纤维进行表面改性后,以环氧树脂为基体,分别制备三种纤维增强环氧树脂复合材料。利用SEM和万能试验机对表面改性前后的碳纤维形态、力学性能及三种纤维/环氧树脂复合材料的力学性能和断面形貌进行表征,研究了纤维激光表面改性对三种纤维及其增强环氧树脂复合材料力学性能的影响。结果表明:激光表面改性对碳纤维/环氧树脂复合材料的力学性能提升最高,其拉伸强度最大提高了77.06%,冲击强度最大提高了31.25%,玄武岩纤维/环氧树脂复合材料的力学性能提升次之,而玻璃纤维/环氧树脂复合材料的力学性能有所下降。因此,激光进行表面改性适用于碳纤维和玄武岩纤维。 相似文献