首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
采用无压烧结工艺制备了长柱状β-Si3N4品种.研究了晶种尺寸对Si3N4陶瓷力学性能和显微结构的影响.结果表明:在1750℃通过控制保温时间(1h、1.5h和2h)可获得不同尺寸的长柱状β-Si3N4晶种.Si3N4陶瓷加入晶种后,其相对密度和抗弯强度虽略有降低,但断裂韧性得到大幅提高.平均长度为4.51μm,长径比为5.71的品种对Si3N4陶瓷的增韧效果最佳;且随着其添加量的增加,Si3N4陶瓷的断裂韧性先升高再降低,当掺量为2wt%时断裂韧性达到最高(提高了20%以上).显微结构分析表明,Si3N4陶瓷断裂韧性的提高,与因晶种加入而导致的Si3N4晶粒长径比和大长柱状晶粒含量的增加有关.  相似文献   

2.
以MgSiN2为烧结助剂,采用热压烧结法在1750~1900℃制备了高热导β-Si3N4陶瓷,研究了烧结助剂成分、保温时间、烧结温度和添加晶种对热导率的影响。采用X射线衍射、扫描电子显微镜、透射电子显微镜、X射线荧光光谱仪、电感耦合等离子体原子发射光谱仪和光热偏转热导测试仪对样品进行了分析和表征。结果表明:通过延长保温时间、提高烧结温度和添加一定量的β-Si3N4晶种3种途径可有效提高β-Si3N4陶瓷的热导率。添加1%(质量分数)β-Si3N4棒状颗粒作为晶种,1900℃烧结4h制备的β-Si3N4陶瓷的热导率最高,达158W/(m·K)。  相似文献   

3.
为了研究γ-Si3N4在高温高压下的相变,在压力为5.2、5.4及5.7 GPa,温度为1 300~1 450 K,保温时间为15 min条件下,以Y2O3、Al2O3和La2O3为烧结助剂,制备了γ-Si3N4烧结体。用X射线衍射和扫描电子显微镜对烧结样品进行了分析和观察。结果表明:γ-Si3N4首先转变为α-Si3N4,再由α-Si3N4转变为β-Si3N4;β-Si3N4烧结体主要由长柱状的晶粒组成,晶粒相互连接,呈交叉分布,显微结构较为均匀,结构致密。拟合了三相相界方程,得到了γ、γ+α、α、α+β、β-Si3N4相界方程,并讨论了相关的相变机制。  相似文献   

4.
以α-Si3N4为原料,采用冲击波法合成了γ-Si3N4粉体。在1660~1690K温度下对γ-Si3N4粉体进行高温稳定性研究并利用氢氟酸对γ-Si3N4粉体进行耐腐蚀性研究。结果表明:真空条件下,在1660K时,γ-Si3N4粉体较为稳定;在1680K时,保温10min和30min后,γ-Si3N4向β-Si3N4的转变率分别为5%和90%。在1690K时,γ-Si3N4在10min内能够完全转变为β-Si3N4。在470K的温度下γ-Si3N4粉体能够与氢氟酸缓慢反应。在490K的温度下,0.2gγ-Si3N4粉体腐蚀5h后,能够与氢氟酸完全反应,生成气体而挥发。  相似文献   

5.
以Y2O3-Al2O3-La2O3体系作烧结助剂,在5.4~5.7GPa、1620K~1770K的高温高压条件下进行了α-Si3N2与γ-Si3N4、α-Si3N4粉体的烧结研究.探讨了烧结温度及压力对烧结体性能的影响.实验测试结果表明:α-Si3N4、γ-Si3N4完全相变为β-Si3N4,相同的烧结条件下,α-Si3N4比γ-Si3N4、α-Si3N4混合粉体烧结试样的相对密度、维氏硬度高.α-Si3N4与γ-Si3N4、α-Si3N4混合粉体烧结试样的最高相对密度与维氏硬度分别为98.78%、21.87GPa和98.71%、21.76GPa.烧结体由相互交错的长柱状β-Si3N4晶粒组成,显微结构均匀.  相似文献   

6.
研究了氮化硅(Si3N4)晶相结构对氮化硅结合碳化硅制品力学性能尤其是常温抗折强度的影响,分析了其作用机理,研究结果表明,α-Si3N4晶相对碳化硅的结合强度要高于α-Si3N4和β-Si3N4共同作用的结果,随着β-Si3N4量的增加,制品的抗折强度下降明显。  相似文献   

7.
田春艳  刘宁 《硅酸盐通报》2007,26(5):1020-1024
采用热压烧结方法,以非晶纳米Si3N4和α-Si3N4粉末作为原料,制备了纳米氮化硅陶瓷,研究了起始粉末对氮化硅陶瓷组织和力学性能的影响.纳米氮化硅陶瓷的主要组成相为α-Si3N4、β-Si3N4和Si2N2O;其组织由尺寸为100nm左右的晶粒组成,α-Si3N4起始粉末的添加对组织形态没有影响.抗弯强度和断裂韧性均随α-Si3N4起始粉末含量的增加而先升后降,在其含量为40%时达到最大值;硬度随α-Si3N4粉末含量的增加而降低.  相似文献   

8.
碳热还原-常压烧结法制备多孔氮化硅陶瓷   总被引:3,自引:0,他引:3  
采用SiO2和α-Si3N4在氮气中通过碳热还原-常压反应烧结法,原位反应制备了氮化硅多孔陶瓷.由于反应中存在大量的质量损失,烧结的制品为高气孔的材料.通过改变原料中α-Si3N4与SiO2和C粉的相对含量,可以形成具有细小针状结构的β-Si3N4晶粒,以此获得气孔率可控的高性能的多孔氮化硅材料.随着原料中α-Si3N4含量的增大,烧结后,样品的总质量损失逐渐减小,收缩率逐渐降低,气孔率逐渐减小,弯曲强度逐渐增大.当α-Si3N4的质量分数为50%时,碳热还原-常压反应烧结的样品中的β-Si3N4晶粒具有更高的长径比,样品气孔率为68.7%,具有优良的力学性能,弯曲强度达到37.7MPa.  相似文献   

9.
采用热丝化学气相沉积法,以Sill4、NH3、N2为反应气源,通过改变氮气流量沉积氮化硅薄膜.通过紫外-可见(UV-VIS)光吸收谱、傅里叶红外透射光谱(FTIR)、X射线衍射谱(XRD)等测试手段对薄膜的光学带隙、键合特性及晶相进行表征与分析.结果表明:薄膜主要表现为Si-N键合结构,当N2流量从20 sccm变化到40 sccm时,热丝能够充分的分解N2,薄膜中N原子过量,其周围的Si和H能充分的与N结合.但由于N2的解离能较高,当N2流量高于40 sccm时,氮气在反应过程中对薄膜内的氮原子反而起到了稀释作用,薄膜的有序程度增大,光学带隙减小,致密性降低.当氮气流量达到150 sccm时,在2θ为69.5°处出现了晶化β-Si3 N4的尖锐衍射峰,其择优取向沿(322)晶向,且Si3 N4晶粒显著增大.因此,氮气流量对薄膜中的氮含量有显著影响,适当的增加氮气流量有利于制备出优质含有小晶粒β-Si3 N4薄膜.  相似文献   

10.
以Y2O3-Al2O3-La2O3体系作烧结助剂,在5.4~5.7GPa、1620-1770K的高温高压条件下进行了α-Si3N4与γ-Si3N4、α-Si3N4粉体的烧结研究,并探讨了烧结温度及压力对烧结体性能的影响。实验结果表明:α-Si3N4、γ-Si3N4完全相变为β-Si3N4;在相同的烧结条件下,α-SigN4比γ-Si3N4、α-Si3N4混合粉体烧结试样的相对密度、维氏硬度高。α-Si3N4与γ-Si3N4、α-Si3N4混合粉体烧结试样的最高相对密度与维氏硬度分别为98.78%、21.87GPa和98.71%、21.76GPa。烧结体由相互交错的长柱状β—Si3N4晶粒组成.显微结构均匀。  相似文献   

11.
添加Y2O3-Al2O3烧结助剂的氮化硅陶瓷的超高压烧结   总被引:2,自引:1,他引:1  
以Y2O3-Al2O3体系为烧结助剂,在5.4~5.7 GPa,1 570~1 770K的高温高压条件下进行了氮化硅陶瓷的超高压烧结研究.用X射线衍射及扫描电镜对烧结样品进行了分析和观察,探讨了烧结温度及压力对烧结的陶瓷样品性能的影响.结果表明:得到的氮化硅由相互交错的长柱状β-Si3N4晶粒组成,微观结构均匀,α-Si3N4完全转变为β-Si3N4.经5.7GPa,1 770K且保温15min的超高压烧结,样品的相对密度达99.0%,Rockwell硬度HRA为99,Vickers硬度HV达23.3GPa.  相似文献   

12.
林少杰  吴一  邹正光 《耐火材料》2012,46(3):197-199,205
以AlN-Y2O3-La2O3为烧结助剂,在5.5 GPa,1 550℃下对c-BN-β-Si3N4复合材料进行了超高压烧结。借助X射线及扫描电镜对烧结样品进行了分析和观察,探讨了保温时间对产物的组成、形貌及力学性能的影响。结果表明:1)超高压条件下c-BN保持了原有的结构及形貌,发育良好的棒状β-Si3N4晶体均匀分布于烧结体中;α-Si3N4完全转变成β-Si3N4的时间随c-BN含量的增加而延长;烧结体相对密度和弯曲强度均随c-BN含量的增加而降低,硬度则随着c-BN含量的增加而增加,而相对密度的降低在一定程度上抵消了c-BN对硬度提高的贡献。2)c-BN质量分数为50%的复合材料同时具备较高的弯曲强度及硬度,其值分别为830 MPa与29.3 GPa。  相似文献   

13.
采用化学沉积的方法,在Ni-Sn-P合金基质上复合Si,N4粒子,获得(Ni-Sn-P)-Si3N4复合镀层.研究了镀液pH、温度、Si3N4微粒加入量以及搅拌速度等工艺条件对镀速的影响.对复合镀层表面形貌和结构进行了分析.测试了镀层的性能,发现随着镀层中Si3N4质量分数的增加,镀层的性能均按照一定的规律发生变化.当Si3N4的质量分数为最大值24.0%时,镀层硬度最高,耐磨性能最好.  相似文献   

14.
固定其他组分配比不变,仅改变配方中Si粉加入量即Si粉从10%增加到60%,经过准静态氮化法反应烧结制得Si3N4——SiC复合材料,并对其进行力学性能、XRD和SEM检测,实验结果显示:随着Si加入量的增加,复合材料的强度逐渐增大,而密度却呈现减小趋势,生成的Si3N4-中β-Si3N4含量增加,形成的网络结构的致密度也相应增大,但β-Si3N4晶粒减小。  相似文献   

15.
研究了Si3N4/WSi2复合陶瓷材料的特殊制备工艺过程及其显微结构.用XRD、SEM、EDX以及气孔测试仪,对每一制备过程步骤中发生的显微结构变化进行了分析.结果表明预烧过程原位生成了WSi2,氮化反应使 Si相几乎全部转化为Si3N4和WSi:,热压使α-Si3N4转化为β-Si3N4,相组成为β-Si3N4、WSi2 以及少量的WsSi3.机械强度随温度上升而增加,1200℃ 强度达988.3MPa.  相似文献   

16.
β-Si3N4陶瓷具有较高的热导率(200~320 W·m-1·K-1),在高速电路和大功率器件散热及封装材料等领域展现了良好的应用前景,并引起广泛关注.基于氮化硅陶瓷导热机理,本文阐述了影响β-Si3 N4陶瓷热导率的因素,并从原料的选取、烧结助剂的选择、晶种的引入和工艺控制四个方面,介绍了国内外提高其热导率的研究进展.  相似文献   

17.
采用MgSiN2作为烧结助剂,在2000℃高温下热压26h,制备了透明β-Si3N4陶瓷.X射线衍射分析表明:透明β-Si3N4陶瓷由纯β-Si3N4相组成.透明-Si3N4陶瓷的透过率随波长增加而增加,当波长为2.5 μm时透过率达到最大值,为70%,波长在0.7~4.0 μm区间,透过率保持在60%以上,截止波长为5.0 μm.  相似文献   

18.
采用常压烧结工艺制备了Si3N4-Y2O3-La2O3陶瓷,并对Si3N4陶瓷的力学性能、相组成和显微组织进行了分析和讨论。结果表明:添加4%Y2O3~4%La2O3的复合稀土氧化物后,Si3N4陶瓷呈长柱状的β-Si3N4晶粒,抗弯强度为960MPa,断裂韧性为7.5MPa.m1/2,具有较好的力学性能。  相似文献   

19.
以β-Si3N4及活性炭黑为原料,按照两者质量比为31制成试样.在埋炭条件下,将试样分别在1480℃、1500℃、1550℃和1600℃保温3 h热处理.利用SEM、EDS及XRD等检测方法,结合热力学分析,研究了高温状态下β-Si3N4在含碳耐火材料中的稳定性以及作为过渡相向碳化硅的转化.结果表明在该试验条件下,β-Si3N4在含碳材料中将作为过渡相向SiC转化,明显的转化温度>1500℃,1600℃仍存在较多未转化的氮化硅;氮化硅颗粒与炭黑的反应主要从接触面开始,然后向内逐步推进;β-Si3N4的粒度对其转化率影响较大.  相似文献   

20.
以闪速燃烧氮化法合成的β-Si3N4粉为主要原料,在w(β-Si3N4粉)为80%、w(α-Al2O3粉)和w(Y2O3粉)分别为10%的混合粉料中,外加3%金属铝粉,混练、成型后,在1 600℃的弱氧化气氛(氮气中配入体积分数分别为0、10%、20%、30%的空气)中实现了β-Si3N4制品的逆氮化反应烧结.结果表明:空气配入量为10%时,得到的Si3N4烧结体指标较好;金属铝粉首先发生氧化,新生成的高活性Al2O3可促进烧结的进行;弱氧化气氛烧成时,通过氧分压来控制氧化物的生成量,既避免了Si3N4的过度氧化,又形成了活性烧结.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号