首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The effect of blending poly(ethyl acrylate) and poly(butyl acrylate) in various proportions with suitably stabilized and plasticized polyvinyl chloride (PVC) was studied with reference to their physical, mechanical, thermal, and morphological properties. The tensile modulus and ultimate tensile strength indicated a rise initially, followed by their steady decrease with increasing concentration of the polyalkyl acrylates. A corresponding behavior of elongation at break and toughness are exhibited. The various polyblends exhibit thermal stability over unmodified PVC, as reflected from their thermomechanical studies, in which the penetration is also inversely related to the respective moduli. The biphasic cocontinuous systems as explicit from the morphological studies support phase mixing at the initial stages, with subsequent phasing‐out tendency, with increasing percentage of polyalkyl acrylate incorporation. The thermomechanical parameters are in conformity to their mechanical parameters, which have been further supported by their morphological studies. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 3698–3703, 2006  相似文献   

2.
赵祥迎  柴大程 《聚氯乙烯》2010,38(10):12-15,27
采用机械共混法和乳液共沉法制备了NBR/PVC共混胶,通过差示扫描量热仪(DSC)和场发射扫描电子显微镜(FE-SEM)对共混胶的微观形貌、结构进行了表征,考察了共混方式和共混胶配比对其力学性能的影响,并比较了共混胶、CPE、P-83对硬质/软质PVC的改性效果。结果表明:①与机械共混胶相比,乳液共沉胶混合得更均匀,分散性更好,其分子级混合程度更好;②乳液共沉胶试样的力学性能在总体上优于机械共混胶;③对于硬质PVC,CPE的改性效果优于其他改性剂;④对于软质PVC,乳液共沉胶的改性效果最好,特别是对撕裂强度的提高非常明显。  相似文献   

3.
The aim of this study is to improve the performance of blends made from recycled polyvinyl chloride (PVC), coming from credit card waste, so that these blends can be used for those applications that must fulfil some requirements with regard to mechanical properties and stability with temperature alterations. With this aim in mind, two polymers of styrenic origin have been combined: styrene acrylonitrile (SAN) and acrylonitrile butadiene styrene (ABS). These polymers are characterized by a satisfactory balance of mechanical properties and thermal stability. PVC blends with both virgin and recycled styrenic polymers have been studied throughout the entire range of compositions. The prior degradation of the recycled materials has been studied by means of Fourier transformed infrared spectroscopy (FTIR).The behavior of the observed Tg values has been analyzed using differential scanning calorimetry (DSC), and the existence of partial miscibility between the different components has been studied. The mechanical properties have been determined using tensile and Charpy impact tests. The thermal stability of the PVC blends with temperature changes has been determined using the Vicat softening temperature (VST). Finally, the fracture surface of the various blends has been analyzed using scanning electron microscopy (SEM). © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 2464–2471, 2006  相似文献   

4.
Specially designed block copolymers have played a role as compatibilizing agents in the system of immiscible polymer blends. We applied lauryl lactam (LA)–caprolactone (CL) block copolymer [P(LA‐b‐CL)] as a compatibilizing agent for immiscible poly(vinyl chloride) (PVC) blends with various polymers. These blends possess high thermal performance and toughness. We investigated the effect of P(LA‐b‐CL) as a compatibilizing agent for immiscible PVC blends with poly(ω‐lauryl lactam) [polyamide 12 (PA12)]. We also described the invention of a new compatibilizing agent system involving P(LA‐b‐CL) for PVC/polypropylene (PP) blends. The mechanical and thermal properties of (1) PVC/PA12 blend compatibilized with P(LA‐b‐CL) and (2) PVC/PP blend compatibilized with P(LA‐b‐CL)/PA12/maleic anhydride–modified PP were both enhanced. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 91: 1983‐1992, 2004  相似文献   

5.
Polylactide (PLA), a main representative of biodegradable and made from renewable resources polymers, is surprisingly brittle at ambient temperature. In this article it is investigated how to increase its toughness by a strategy called “rubber toughening” using poly(1,4‐cis‐isoprene), a major component of natural rubber, which is immiscible with PLA, could be well dispersed in PLA matrix and is biodegradable. Immiscible blends of PLA with poly(1,4‐cis‐isoprene) were prepared by melt blending and their properties were studied and optimized. Incorporation of as low as 5 wt % of rubber increased the strain at break of compression molded film during uniaxial drawing, and also improved its tensile impact strength by 80%. The complex mechanism of plastic deformation in the blends leading to improvement of ductility and toughness was revealed. The rubbery particles initiated crazing at the early stages of deformation, as evidenced by transmission and scanning electron microscopy and also by small angle X‐ray scattering. Crazing was immediately followed by cavitation inside rubber particles, which further promoted shear yielding of PLA. The sequence of those mechanisms was proven by microscopic investigation. All three elementary mechanisms acting in the sequence indicated are responsible for surprisingly efficient toughening of PLA by a major component of natural rubber. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

6.
The effect of mercapto‐modified ethylene vinyl acetate copolymer (EVALSH) on the rheological and dynamic mechanical properties of acrylonitrile butadiene rubber (NBR) and ethylene vinyl acetate copolymer (EVA) blends was evaluated at different blend compositions. The addition of 5 phr of EVALSH in the blends resulted in an increase of the melt viscosity and a substantial decrease of the extrudate swell ratio. These results can be attributed to the interactions occurring between the double bond of the NBR phase and the mercapto groups along the EVALSH backbone. The power–law index also presents a slight increase in the presence of EVALSH, indicating a decrease in the pseudoplastic nature of the compatibilized blends. The reactive compatibilization of NBR/EVA blends with EVALSH was also confirmed by the decrease of damping values and an increase of glass transition temperature, in dynamic mechanical analysis. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 84: 2335–2344, 2002  相似文献   

7.
In this work, ternary polymer blends based on polypropylene (PP)/polycarbonate (PC)/poly(styrene‐b‐(ethylene‐co‐butylene)‐b‐styrene) (SEBS) triblock copolymer and a reactive maleic anhydride grafted SEBS (SEBS‐g‐MAH) at fixed compositions are prepared using twin‐screw extruder at different levels of die temperature (235‐245‐255°C), screw speed (70‐100‐130 rpm), and blending sequence (M1‐M2‐M3). In M1 procedure, all of the components are dry blended and extruded simultaneously using Brabender twin‐screw extruder, whereas in M2 procedure, PC, SEBS, and SEBS‐g‐MAH minor phases are first preblended in twin‐screw extruder and after granulating are added to PP continuous phase in twin‐screw extruder. Consequently, in M3 procedure, PP and SEBS‐g‐MAH are first preblended and then are extruded with other components. The influence of these parameters as processing conditions on mechanical properties of PP/PC/SEBS ternary blends is investigated using L9 Taguchi experimental design. The responding variables are impact strength and tensile properties (Young's modulus and yield stress), which are influenced by the morphology of ternary blend, and the results are used to perform the analysis of mean effect as well. It is shown that the resulted morphology, tensile properties, and impact strength are influenced by extrusion variables. Additionally, the optimum processing conditions of ternary PP/PC/SEBS blends were achieved via Taguchi analysis. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

8.
Polypropylene (PP)/styrene–butadiene rubber blends were studied with special attention given to the effects of the blend ratio and dynamic vulcanization. Dicumyl peroxide (DCP) was used as the curing agent in combination with N,N′‐m‐phenylene bismaleimide (BMI) as the coagent for the curing process. Outstanding mechanical performance, especially with regard to the elongation at break, and better resistance to compression set were achieved with the dynamic vulcanization; this indicated that the DCP/BMI system also acted as a compatibilizing agent. This phenomenon was also confirmed by Fourier transform infrared spectroscopy of the insoluble material, the crystallinity degree of the PP phase (as investigated by X‐ray diffractometry), and scanning electron microscopy. The dynamic mechanical properties of the nonvulcanized and vulcanized blends were also investigated. The aging resistance of the blends was also evaluated. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

9.
Blends of thermoplastic starch and recycled polyvinylbutyral from automotive windscreens were investigated. Mechanically compatible blends are formed at low to intermediate starch content. However, scanning electron microscopy and dynamic‐mechanical analysis revealed a phase‐separated nature for all blend compositions investigated. Tensile properties are negatively affected by aging in a high humidity environment and they deteriorate rapidly when the samples are soaked in water. Synergistic property enhancement was observed for a compound containing 22% thermoplastic starch. It features a higher tensile strength, shows better water resistance, and is significantly less affected by aging. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 1751–1755, 2006  相似文献   

10.
The mechanical properties, melt rheology, and morphology of binary blends comprised of two polypropylene (PP) grades and two liquid crystalline polymers (LCP) have been studied. Compatibilization with polypropylene grafted with maleic anhydride (PP-g-MAH) has been attempted. A moderate increase in the tensile moduli and no enhancements in tensile strength have been revealed. Those findings have been attributed to the morphology of the blends, which is predominantly of the disperse mode. LCP fibers responsible for mechanical reinforcement were only exceptionally evidenced. Discussion of PP-LCP interfacial characteristics with respect to mechanical properties-morphology interrelations allowed evaluation of the compatibilizing efficiency of PP-g-MAH. Factors important for successful reinforcement of PP with LCP have been specified. © 1997 John Wiley & Sons, Inc. J Appl Polym Sci 66: 969–980, 1997  相似文献   

11.
A DSC thermogram showed two separate glass transition temperatures in PVC/PMMA mixtures over the entire composition range; multiphase structures were observed in an optical microscope. FTIR spectra indicate that there are no strong specific interactions between these two polymers. The earlier studies on this blend system are briefly reviewed.  相似文献   

12.
The mechanical properties of multifilament yarns, spun from the blends of a plastic‐grade polymer with a fiber‐grade CR‐polymer in the composition range of 10–50 wt % added, were investigated. The predicted modulus of a two‐phase blend, calculated from several representative equations, was compared with the elastic modulus of drawn yarns, determined from the stress vs. strain curve and dynamic modulus obtained from the sound velocity measurements. The best fit was achived with the Kleiner's simplex equation. For both the static and dynamic elastic modulus, the largest negative deviation is seen at the 80/20 and 60/40 plastic/fiber‐grade polymer blend composition, while the largest positive deviation is seen at the 90/10 plastic/fiber‐grade polymer blend composition, suggesting good compatibility of both polymers, when only a small percent of the fiber‐grade CR‐polymer is added. Improved spinnability and drawability of blended samples led to the yarns with the tensile strength over 8 cN/dtex, elastic modulus over 11 GPa and dynamic modulus over 15.5 GPa. Structural investigations have shown that the improved mechanical behavior of blended samples, compared to the yarn spun from the pure plasic‐grade polymer, is the consequence of a higher degree of crystallinity, and above all, of a much higher orientation of macromolecules. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 75: 1211–1220, 2000  相似文献   

13.
The mechanical and thermal characteristics and morphology of polyamide 6 (PA6)/isotactic polypropylene (iPP) blends (10/90 w/w) prepared with different processing procedures and incorporated with an aryl amide nucleating agent, a kind of β‐nucleating agent (β‐NA) for iPP, were investigated. The yield strength and flexural modulus of the blends decreased as β‐NA was introduced into the blends, whereas the impact strength and elongation at break improved. The crystalline structures of the blends closely depended on (1) the processing conditions and (2) competition between the β‐nucleating effect of β‐NA and the α‐nucleating effect of PA6 for iPP. Scanning electron microscopy, differential scanning calorimetry, and X‐ray diffraction were adopted to reveal the microstructures of the blends. At a low β‐NA content (<0.1 wt %), the α‐phase iPP dominated the blends, whereas the relative content of the β‐phase iPP increased remarkably when the β‐NA content was not less than 0.1 wt %. The processing conditions also showed profound influences on the supermolecular structures of iPP; this resulted in different mechanical properties of the blends. As for PA6, the crystallization behavior and crystalline structure did not exhibit obvious changes, but PA6 did play an important role in the epitaxial crystallization of iPP on PA6. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

14.
The effects of styrene-co-acrylonitrile resin (AS) on the mechanical properties, morphology, and plasticizing and rheological behaviors of poly(vinyl chloride)/chlorinated polyethylene(PVC/CPE) blends are studied. The results show that the impact strength and the tensile strength are all increased and the plasticizing and rheological behaviors are also improved when a certain amount of AS is added into PVC/CPE blends, which are different in characteristics and regularity from plastics toughened with elastomers. It is blends of brittle—ductile transition regions (i.e., PVC/CPE = 100/10, 100/15) that can obviously be toughened by AS. The analysis of the morphological structure shows that AS promotes the formation of a CPE network that embeds the primary particles of PVC. © 1997 John Wiley & Sons, Inc. J Appl Polym Sci 66: 1455–1460, 1997  相似文献   

15.
Polymer blends and polymer‐based composites are two of the most rapidly developing groups of materials being of industrial, as well as of academic, interest. More than a decade ago a new group of polymer materials was introduced, which became known under the name ‘microfibrilar composites’ (MFCs). They were obtained by the transformation of blends of thermoplastic polymers into micro‐ or nanostructured systems by combination of appropriate mechanical and thermal treatments. Since then, the importance of these novel materials, both for theory and for engineering practice, has increased significantly. It is an objective of this review to outline the place of MFCs within the whole variety of polymer‐based composites. Furthermore, the methods of their preparation, the ways of investigating their structure and the relation of the structure and mechanical properties are discussed. Ultimately, an evaluation of the future trends in this exiting interdisciplinary research field is attempted. Copyright © 2007 Society of Chemical Industry  相似文献   

16.
The mechanical properties of polystyrene/polyamide-6 (50/50 wt/wt) blends were improved by additions of small amounts of poly(styrene-g-ethylene oxide) (SEO) during compounding by extrusion. Tensile testing of injection-molded samples revealed that the blends developed a yield point after addition of 1 wt % SEO. The elongation at break increased by almost a factor of 6, and the impact strength increased by a factor of 1.5 after adding 3 wt % SEO. Morphological analysis by electron microscopy showed that additions of SEO resulted in decreased domain sizes, and seemed to promote interfacial adhesion. The morphologies of the compatibilized blends also had a higher degree of anisotropy, as compared with the uncompatibilized blend. © 1998 John Wiley & Sons, Inc. J Appl Polym Sci 70: 1887–1891, 1998  相似文献   

17.
针对硬质PVC混料的热混出料温度、混料顺序以及干混料的熟化时间等混料参数对干混料的加工行为的影响进行了探讨,同时对混料设备的选择、混料加料量及如何判断干混料的优劣做了简要的说明。  相似文献   

18.
曲秀芳  李营  姜法治 《弹性体》2008,18(3):33-35
将PCR(PE/CR=30/70)作为第三组分加入NBR/PVC共混体系中,能促使炭黑等配合剂快速均匀地分散,提高了混炼胶综合物理机械性能;阐述了PCR对NBR/PVC的共混相容性机理、共混过程中吃粉速度及对硫化胶性能的影响等。结果表明,PCR在合适的用量时,混炼胶吃炭黑时间比没加PCR时减少了一倍多,硫化胶拉伸强度、扯断伸长率、阿克隆磨耗以及与金属粘着强度等提高幅度均较大。  相似文献   

19.
The compatibilizing effect of the triblock copolymer poly(styrene-b-butadiene-b-styrene) (SBS) on the morphology and mechanical properties of immiscible polypropylene/polystyrene (PP/PS) blends were studied. Blends with three different weight ratios of PP and PS were prepared and three different concentrations of SBS were used for investigations of its compatibilizing effects. Scanning electron microscopy (SEM) showed that SBS reduced the diameter of the PS-dispersed particles as well as improved the adhesion between the matrix and the dispersed phase. Transmission electron microscopy (TEM) revealed that in the PP matrix dispersed particles were complex “honeycomblike” aggregates of PS particles enveloped and joined together with the SBS compatibilizer. Wide-angle X-ray diffraction (WAXD) analysis showed that the degree of crystallinity of PP/PS/SBS slightly exceeded the values given by the addition rule. At the same time, addition of SBS to pure PP and to PP/PS blends changed the orientation parameters A110 and C significantly, indicating an obvious SBS influence on the crystallization process in the PP matrix. SBS interactions with PP and PS influenced the mechanical properties of the compatibilized PP/PS/SBS blends. Addition of SBS decreased the yield stress and the Young's modulus and improved the elongation at yield as well as the notched impact strength in comparison to the binary PP/PS blends. Some theoretical models for the determination of the Young's modulus of binary PP/PS blends were used for comparison with the experimental results. The experimental line was closest to the series model line. © 1998 John Wiley & Sons, Inc. J. Appl. Polym. Sci. 69: 2625–2639, 1998  相似文献   

20.
Blends of polystyrene (PS) with polyester polyurethane elastomer (PU‐es) were compatibilized by addition of poly(styrene‐co‐maleic anhydride) (SMA) containing 7 wt % of maleic anhydride. Binary nonreactive (PS/PU‐es) blends, binary reactive (SMA/PU‐es) blends, and ternary reactive blends (PS/SMA/PU‐es) were prepared with 10 and 20 wt % of PU‐es. The maleic anhydride content in the ternary reactive blends was varied through addition of different SMA amounts from 0.5 to 5 wt %. Polyurethane in the blends was crosslinked by using dicumyl peroxide or sulfur to improve its mechanical properties. The experimental processing conditions, such as temperature and rotor speed in an internal mixer, were analyzed before blend preparation by processing the individual polymers, PS and SMA, and the PS/PU‐es nonreactive blend (90/10), to prevent the degradation of the polymer during melt mixing and to assure macroscopic homogeneity. The torque behavior during the mixture indicated a grafting copolymerization, which was responsible for the significant drop of the PU‐es domain size in the glassy matrix, as observed by scanning electronic microscopy (SEM). The miscibility of the glassy matrix, which was shown to be dependent on the composition and the phase behavior of ternary blends, became very complex as the SMA concentration increased, as concluded from dynamical–mechanical analysis. Blends containing 20 wt % of PU‐es presented an increase up to a factor of 2 in the deflection at break in relation to PS. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 93: 2297–2304, 2004  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号