共查询到20条相似文献,搜索用时 15 毫秒
1.
Saccharomyces cerevisiae strains carrying snf3 are defective in high affinity glucose transport, and thus are unable to grow fermentatively on media with low concentrations of glucose. A multicopy suppressor of the snf3 growth defect, SKS1 (suppressor kinase of snf3), was found to encode a putative ser/thr protein kinase homologous to Ran1p, a kinase that regulates the switch between meiosis and vegetative growth in Schizosaccharomyces pombe. Overexpression of the SKS1 open reading frame is sufficient for suppression of the growth defects of snf3 mutants. Disruption of the open reading frame eliminates this suppression; as does the mutation of the consensus ATP binding site of Sks1p. A DDSE (DNA dependent snf3 suppressor element) was found to be present in the SKS1 promoter region. The suppression by this DDSE occurs in the absence of SKS1 coding region, that is, the DDSE can suppress a snf3 sks1 double null mutant which fails to grow fermentatively on low glucose as a snf3 mutant does. Both SKS1 and its DDSE can additionally suppress the growth defects of grr1 mutants, which are also impaired in high affinity glucose transport. The snf3 genomic suppressors, rgt1, RGT2 and ssn6, are also capable of suppressing snf3 associated growth defects in a strain lacking sks1. 相似文献
2.
It has been claimed that the low-affinity component of glucose transport in Saccharomyces cerevisiae is due to passive diffusion of the sugar across the plasma membrane. We have investigated this possibility. For this purpose we have measured the permeability coefficient of hexoses in this organism. We have found that this coefficient is at least two to three orders of magnitude lower than required to account for the low-affinity component of glucose transport, and have concluded that this component is not due to passive diffusion. 相似文献
3.
Hans-peter Smits Gertien J. Smits Pieter W. Postma Michael C. Walsh Karel Van Dam 《Yeast (Chichester, England)》1996,12(5):439-447
Glucose uptake in Saccharomyces cerevisiae is believed to consist of two kinetically distinguishable components, the affinity of which is modulated during growth on glucose. It has been reported that triple hexose-kinase deletion mutants do not exhibit high-affinity glucose uptake. This raises the question of whether and how high-affinity glucose uptake is related to the presence of glucose-phosphorylating enzymes. In this study the kinetics of glucose uptake in both wild-type cells and cells of hexose-kinase deletion mutants, grown on either glycerol or galactose, were determined using a rapid-uptake method. In wild-type cells glucose uptake measured over either 5 s or 200 ms exhibited high affinity. In contrast, in cells of hexose-kinase deletion mutants the apparent affinity of glucose uptake was dependent on the time scale during which uptake was measured. Measurements on the 5-s scale showed apparent low-affinity uptake whereas measurements on the 200-ms scale showed high-affinity uptake. The affinity and maximal rate of the latter were comparable to those in wild-type cells. Using a simple model for a symmetrical facilitator, it was possible to simulate the experimentally determined relation between apparent affinity and the time scale used. The results suggest that high-affinity glucose transport is not necessarily dependent on the presence of glucose-phosphorylating enzymes. Apparent low-affinity uptake kinetics can arise as a consequence of an insufficient rate of removal of intracellular free glucose by phosphorylation. This study underlines the need to differentiate between influences of the translocator and of metabolism on the apparent kinetics of sugar uptake in yeast. 相似文献
4.
Overexpression of the HAL1 gene improves the tolerance of Saccharomyces cerevisiae to NaCl by increasing intracellular K+ and decreasing intracellular Na+. The effect of HAL1 on intracellular Na+ was mediated by the PMR2/ENA1 gene, corresponding to a major Na+ efflux system. The expression level of ENA1 was dependent on the gene dosage of HAL1 and overexpression of HAL1 suppressed the salt sensitivity of null mutants in calcineurin and Hal3p, other known regulators of ENA1 expression. The effect of HAL1 on intracellular K+ was independent of the TRK1 and TOK1 genes, corresponding to a major K+ uptake system and to a K+ efflux system activated by depolarization, respectively. Overexpression of HAL1 reduces K+ loss from the cells upon salt stress, a phenomenon mediated by an unidentified K+ efflux system. Overexpression of HAL1 did not increase NaCl tolerance in galactose medium. NaCl poses two types of stress, osmotic and ionic, counteracted by glycerol synthesis and sodium extrusion, respectively. As compared to glucose, with galactose as carbon source glycerol synthesis is reduced and the expression of ENA1 is increased. As a consequence, osmotic adjustment through glycerolsynthesis, a process not affected by HAL1, is the limiting factor for growth on galactose under NaCl stress. © 1997 John Wiley & Sons, Ltd. 相似文献
5.
Kluyveromyces lactis killer toxin causes sensitive strains of a variety of yeasts to arrest at the G1 stage of the cell cycle, and to lose viability. We describe here the isolation and characterization of a class of recessive mutations in Saccharomyces cerevisiae that leads to toxin resistance and a temperature-sensitive phenotype. These mutant cells arrest growth at 37°C with a characteristic phenotype of elongated buds. Cloning of the gene complementing these defects revealed it to be CAL1, coding for chitin synthase 3 activity. Calcofluor staining of the mutant cells indicated that chitin is absent both at 23°C and 37°C. Given that the CAL1 activity is responsible for the synthesis of most of chitin in yeast cells, and that in its absence the cells are viable but resistant to the killer toxin, our results strongly suggest that chitin might represent the receptor for this killer toxin. 相似文献
6.
7.
A recessive mutation leading to complete loss of thiamine uptake in Saccharomyces cerevisiae was mapped on the left arm of chromosome VII, approximately 56cM centromere-distal to trp5. As the analysed locus is relatively distant from its centromere and from the markers used, its attachment to chromosome VII was confirmed by chromosome loss methods. 相似文献
8.
Aloys W. R. H. Teunissen Johan A. Van Den Berg H. Yde Steensma 《Yeast (Chichester, England)》1993,9(1):1-10
The genetics of flocculation in the yeast Saccharomyces cerevisiae are poorly understood despite the importance of this property for strains used in industry. To be able to study the regulation of flocculation in yeast, one of the genes involved, FLO1, has been partially cloned. The identity of the gene was confirmed by the non-flocculent phenotype of cells in which the C-terminal part of the gene had been replaced by the URA3 gene. Southern blots and genetic crosses showed that the URA3 gene had integrated at the expected position on chromosome I. A region of approximately 2 kb in the middle of the FLO1 gene was consistently deleted during propagation in Escherichia coli and could not be isolated. Plasmids containing the incomplete gene, however, were still able to cause weak flocculation in a nonflocculent strain. The 3′ end of the FLO1 gene was localized at approximately 24 kb from the right end of chromosome I, 20 kb centromere-proximal to PHO11. Most of the newly isolated chromosome I sequences also hybridized to chromosome VIII DNA, thus extending the homology between the right end of chromosome I and chromosome VIII to approximately 28 kb. 相似文献
9.
10.
A. W. R. H. Teunissen E. Holub J. Van Der Hucht J. A. Van Den Berg H. Y. Steensma 《Yeast (Chichester, England)》1993,9(4):423-427
The cloned part of the flocculation gene FLO1 of Saccharomyces cerevisiae (Teunissen, A.W.R.H., van den Berg, J.A. and Steensma, H.Y. (1993). Physical localization of the flocculation gene FLO1 on chromosome I of Saccharomyces cerevisiae, Yeast, in press) has been sequenced. The sequence contains a large open reading frame of 2685 bp. The amino acid sequence of the putative protein reveals a serine- and threonine-rich C-terminus (46%), the presence of repeated sequences and a possible secretion signal at the N-terminus. Although the sequence is not complete (we assume the missing fragment consists of repeat units), these data strongly suggest that the protein is located in the cell wall, and thus may be directly involved in the flocculation process. 相似文献
11.
Cloning and sequencing of RCS1, Saccharomyces cerevisiae gene whose product seems to be involved in timing the budding event of the cell cycle, is described. A haploid strain in which the 3'-terminal region of the chromosomal copy of the gene has been disrupted produces cells that are, on average, twice the size of cells of the parental strain. The critical size for budding in the mutant is similarly increased, and the disruption mutation is dominant in a diploid heterozygous for the RCS1 gene. Spores from this diploid have a reduced ability to germinate, the effect being more pronounced in the spores carrying the disrupted copy of RCS1. However, disrupted cells recover from alpha-factor treatment equally as well as wild-type cells. 相似文献
12.
13.
Marina Vai Ivan Orlandi Paola Cavadini Lilia Alberghina Laura Popolo 《Yeast (Chichester, England)》1996,12(4):361-368
The GGP1/GAS1/CWH52 gene of Saccharomyces cerevisiae encodes a major exocellular 115 kDa glycoprotein (gp115) anchored to the plasma membrane through a glycosylphosphatidylinositol (GPI). The function of gp115 is still unknown but the analysis of null mutants suggests a possible role in the control of morphogenesis. PHR1 gene isolated from Candida alibicans is homologous to the GGP1 gene. In this report we have analysed the ability of PHR1 to complement a ggp1Δ mutation in S. cerevisiae. The expression of PHR1 controlled by its natural promoter or by the GGP1 promoter has been studied. In both cases we have observed a complete complementation of the mutant phenotype. Moreover, immunological analysis has revealed that PHR1 in budding yeast gives rise to a 75–80 kDa protein anchored to the membrane through a GPI, indicating that the signal for GPI attachment present in the C. albicans gene product is functional in S. cerevisiae. 相似文献
14.
15.
The cysteine transport system of Saccharomyces cerevisiae. 总被引:1,自引:0,他引:1
Although Saccharomyces cerevisiae strains had different cysteine uptake activities, they revealed monophasic uptake kinetics and had the same KT (83.3 microM). The optimal pH of cysteine uptake was between 4.5 and 5.0, but the activity was quickly lost if cells were kept in buffer. When the activity was measured in the growth medium, it increased in the presence of EDTA and greatly decreased in the presence of mercuric chloride. Thioglycol as well as metabolic inhibitors such as dinitrophenol and azide were inhibitory. Homocysteine and methionine were competitive and non-competitive inhibitors, respectively. Cysteamine and cysteic acid were not inhibitory. From these observations, we conclude that the system mediating uptake of cysteine is specific (we thus name it the cysteine transport system) and that the cysteine transport system recognizes not only the SH-group but also amino- and carboxyl-groups. In wild-type strains the cysteine transport system was derepressed only when the cells were incubated without any sulfur source. On the other hand, in cysteine-dependent mutants, cysteine uptake activity increased with increase of exogenous supply of cysteine, glutathione or methionine. From this result, we suspect that the cellular cysteine level is the limiting factor for biosynthesis of the cysteine transport system in cysteine-dependent strains. 相似文献
16.
17.
The allantoin and uracil permease gene sequences of Saccharomyces cerevisiae are nearly identical. 总被引:1,自引:0,他引:1
We have determined the structure of the allantoin permease (DAL4) gene of Saccharomyces cerevisiae. The gene putatively encodes a hydrophobic protein with a M(r) of 71,755. It possesses the alternating hydrophobic-hydrophilic regions similar to those found in many other integral membrane proteins. The most striking feature of the allantoin permease component encoded by DAL4 is its striking similarity to the uracil permease component encoded by FUR4. Although data available indicate that these proteins do not share any overlap of function, their predicted protein sequences are 68% identical, 81% similar, and their DNA sequences are 70% identical. The upstream regulatory region of DAL4 contains all of the characterized cis-acting elements previously reported for inducible allantoin pathway genes: six sequences homologous to UASNTR, the element responsible for nitrogen catabolite repression-sensitive activation of allantoin pathway gene expression, and two sequences homologous to the cis-acting element responsible for inducer-responsiveness of the allantoin pathway genes, UIS. The finding of these homologous sequences predicted to exist on the basis of DAL4's expression characteristics, supports and strengthens the suggestion that these elements mediate the functions we have previously ascribed to them. 相似文献
18.
19.
M. L. Bach F. Roelants J. De Montigny M. Huang S. Potier J. L. Souciet 《Yeast (Chichester, England)》1995,11(2):169-177
A prototroph revertant (Rev9) selected from an ATCase? mutant of the URA2 gene containing three nonsense mutations was shown to contain two ATCase coding sequences. We cloned both ATCase coding areas to show that the duplicated locus (dl9) was the only functional one. Its size corresponded roughly to the second half of the URA2 wild-type gene. Sequence analysis of the 5′ end of dl9 indicated that this duplicated sequence was inserted within the intergenic region close to the MRS3 gene and was transcribed from an unknown promoter divergently from the MRS3 gene. The event leading to the revertant strain Rev9 included a rearrangement that increased the size of chromosome X by about 60 kb. In agreement with such a rearrangement, recombination was undetectable in the vicinity of the locus dl9. Genetic mapping confirms that the MRS3 gene is 2 cM distal to the URA2 gene on the right arm of chromosome X. 相似文献
20.
The allantoinase (DAL1) gene of Saccharomyces cerevisiae. 总被引:8,自引:0,他引:8