首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Using an analogy between light optics and electron optics, we have calculated beam characteristics such as the beam profile and the optical transfer function for several sizes of annular and circular apertures on a scanning electron microscope (SEM). It has been found that an annular aperture improves the image quality with regard to several kinds of image resolution and the depth of focus at the price of good low-frequency (nu) contrast. In contrast with conventional circular-aperture SEM images, a combination of a low-nu-pass filtered, circular-aperture SEM image with a high-nu-pass filtered, annular-aperture SEM image has the potential to enhance the image quality in terms of both the image resolution and the depth of focus.  相似文献   

2.
Quality of a scanning electron microscopy (SEM) image is strongly influenced by noise. This is a fundamental drawback of the SEM instrument. Complex hysteresis smoothing (CHS) has been previously developed for noise removal of SEM images. This noise removal is performed by monitoring and processing properly the amplitude of the SEM signal. As it stands now, CHS may not be so utilized, though it has several advantages for SEM. For example, the resolution of image processed by CHS is basically equal to that of the original image. In order to find wide application of the CHS method in microscopy, the feature of CHS, which has not been so clarified until now is evaluated correctly. As the application of the result obtained by the feature evaluation, cursor width (CW), which is the sole processing parameter of CHS, is determined more properly using standard deviation of noise Nσ. In addition, disadvantage that CHS cannot remove the noise with excessively large amplitude is improved by a certain postprocessing. CHS is successfully applicable to SEM images with various noise amplitudes. SCANNING 35:292‐301, 2013. © 2012 Wiley Periodicals, Inc  相似文献   

3.
Michael JR 《Scanning》2011,33(3):147-154
The resolution of secondary electron low beam energy imaging of a scanning electron microscope equipped with a monochromator is quantitatively measured using the contrast transfer function (CTF) method. High-resolution images, with sub-nm resolutions, were produced using low beam energies. The use of a monochromator is shown to quantitatively improve the resolution of the SEM at low beam energies by limiting the chromatic aberration contribution to the electron probe size as demonstrated with calculations and images of suitable samples. Secondary electron image resolution at low beam energies is ultimately limited by noise in the images as shown by the CTFs.  相似文献   

4.
In principle, the resolution of backscattered electron (BSE) images can be little improved, even though an infinitely small beam size is achieved by various improvements in the intrinsic instrument. In order to circumvent this problem, a method is proposed which utilizes an on-line digital computer for the image recording and processing. The major image-processing tools are reduction, expansion, super-imposition with matching of the images, and high-emphasis filtering in the Fourier domain. By using various combinations of these techniques, the resolution of BSE images has been significantly improved. The validity of these improved images has been confirmed. In the case of a BSE image with too wide a dynamic range, both the present method and digital homomorphic filtering provide successful results.  相似文献   

5.
Limitations of scanning electron microscopy (SEM) image resolution and quality were measured in digital image data and their effect on image contrasts was analyzed and corrected by differential hysteresis (DH) processing. DH processing is a mathematical procedure that utilizes hysteresis properties of intensity variations in the image for a segmentation of differential contrast patterns. These patterns display contrast properties of the data as coherent full-frame images. The contrast segmentation is revertible so that the original image can be restored from the sum of the sequentially extracted DH contrast patterns. DH imaging enhances weak contrast components so that they are more easily recognizable and displays SEM image data free of signal collection efficiency contrasts. Example image data include environmental SEM (ESEM) and SEM images of low and mediumhigh magnifications where collection deficiencies included charging of the specimen surface, obstructions from specimen topography, and uneven signal collection properties of the detector. ESEM low-vacuum image data, which appear to be of high quality, contained local areas of reduced contrasts due to residual surface charging. In such areas, signal contrasts were reduced up to 80%, which suppressed most of the weak short-range contrasts. In low-magnification SEM images, up to 93% of the local high precision contrast was lost from the various adverse effects which diminished the pixel-related contrast resolution of the microscope and resulted in images with low detail. Also, at medium magnification, surface charging effects dramatically reduced the image quality because contrasts resulting from local electron beam/specimen interactions were reduced by as much as 71%. DH imaging restored the local contrast losses by elimination of the collected distorted fraction of signal contrasts and reconstitution of the collected maintained fraction. Restored DH images are of superior quality and enhance the imaging capability of the conventional SEM. DH contrast segmentation provides an improved basis for the measurement of various signal contrast components and detector performances. The DH analysis will ultimately facilitate a precise deduction of specimen properties from extracted contrast patterns.  相似文献   

6.
In conventional scanning electron microscopy (SEM), the lateral resolution is limited by the electron beam diameter impinging on the specimen surface. Near field emission scanning electron microscopy (NFESEM) provides a simple means of overcoming this limit; however, the most suitable field emitter remains to be determined. NFESEM has been used in this work to investigate the W (1 1 0) surface with single-crystal tungsten tips of (3 1 0), (1 1 1), and (1 0 0)-orientations. The topographic images generated from both the electron intensity variations and the field emission current indicate higher resolution capabilities with decreasing tip work function than with polycrystalline tungsten tips. The confinement of the electron beam transcends the resolution limitations of the geometrical models, which are determined by the minimum beam width.  相似文献   

7.
Focused ion beam‐scanning electron microscopy (FIB‐SEM) is a widely used and easily operational equipment for three‐dimensional reconstruction with flexible analysis volume. It has been using successfully and increasingly in the field of solid oxide fuel cell. However, the phase contrast of the SEM images is indistinct in many cases, which will bring difficulties to the image processing. Herein, the phase contrast of a conventional Ni/yttria stabilized zirconia anode is tuned in an FIB‐SEM with In‐Lens secondary electron (SE) and backscattered electron detectors. Two accessories, tungsten probe and carbon nozzle, are inserted during the observation. The former has no influence on the contrast. When the carbon nozzle is inserted, best and distinct contrast can be obtained by In‐Lens SE detector. This method is novel for contrast enhancement. Phase segmentation of the image can be automatically performed. The related mechanism for different images is discussed.  相似文献   

8.
Scanning electron microscopy (SEM) has produced a wealth of novel images that have significantly complemented our perception of biological structure and function, derived initially from transmission electron microscopy (TEM) information. SEM is a surface imaging technology, and its impact at the subcellular level has been restricted by reduced resolution in comparison with TEM. Recently, SEM resolution has been considerably improved by the advent of high-brightness sources used in field-emission instruments (FEISEM) which have produced resolution of around 1 nm, virtually equivalent to TEM “working resolution.” Here we review our findings in the use of FEISEM in the imaging of nuclear envelopes and their associated structures, such as nuclear pore complexes, and the relationships of structure and function. FEISEM allows the structurally orientated cell biologist to visualise, directly and in three dimensions, subcellular structure and its modulation with a view to understanding its functional significance.  相似文献   

9.
Matter‐wave microscopy can be dated back to 1932 when Max Knoll and Ernst Ruska published the first image obtained with a beam of focussed electrons. In this paper a new step in the development of matter‐wave microscopy is presented. We have created an instrument where a focussed beam of neutral, ground‐state atoms (helium) is used to image a sample. We present the first 2D images obtained using this new technique. The imaged sample is a free‐standing hexagonal copper grating (with a period of about 36 μm and rod thickness of about 8 μm). The images were obtained in transmission mode by scanning the focussed beam, which had a minimum spot size of about 2.0 μm in diameter (full width at half maximum) across the sample. The smallest focus achieved was 1.9 ± 0.1 μm. The resolution for this experiment was limited by the speed ratio of the atomic beam through the chromatic aberrations of the zone plate that was used to focus. Ultimately the theoretical resolution limit is set by the wavelength of the probing particle. In praxis, the resolution is limited by the source and the focussing optics.  相似文献   

10.
The mechanisms of electron beam scattering are examined to evaluate its effect on contrast and resolution in high-pressure scanning electron microscopy (SEM) techniques reported in the literature, such as moist-environment ambient-temperature SEM (MEATSEM) or environmental SEM (ESEM). The elastic and inelastic scattering cross-sections for nitrogen are calculated in the energy range 5–25 keV. The results for nitrogen are verified by measuring the ionization efficiency, and measurements are also made for water vapour. The effect of the scattered beam on the image contrast was assessed and checked experimentally for a step contrast function at 20 kV beam voltage. A considerable degree of beam scattering can be tolerated in high-pressure SEM operation without a significant degradation in resolution. The image formation and detection techniques in high-pressure SEM are considered in detail in the accompanying paper.  相似文献   

11.
High resolution dark-field electron microscopy   总被引:1,自引:0,他引:1  
In the last few years some promising images of biological specimens have been obtained using the high contrast and resolution of dark-field electron microscopy. However, important problems of image interpretation and difficulties in specimen preparation limit at the present time, the usefulness of this mode of image formation. The destruction of the sample by the electron beam, is of utmost importance. Some possibilities of partly overcoming it are discussed.  相似文献   

12.
Using conventional optics coupled with image processing, several submicron objects have been studied with light microscopy. These include polystyrene beads (88, 264 and 557 nm), frustules from the diatom Pleurosigma angulatum and the T-4 bacteriophage, either attached to its host, Escherichia coli, or free in the medium. The best results were obtained from dark-field and phase contrast optics. Digital image processing with the use of colour look-up tables in real time greatly promoted precise focusing of the objects. Selective discrimination of image histogram grey values allowed for selection of a sharp contour boundary, thus more effectively delimiting the submicron objects. User interactive scaling of the diffraction limited boundaries greatly improved discrimination of the objects. While Abbe limits have not been surpassed by these techniques, the greater ‘apparent resolution’ could be attributable to a ‘better recognition’ of the submicron objects examined. Equivalence of images of polystyrene beads and bacteriophages was demonstrated with light and electron microscopy of the same field.  相似文献   

13.
Helium ion microscopy (HeIM) presents a new approach to nanotechnology and nanometrology, which has several potential advantages over the traditional scanning electron microscope (SEM) currently in use in research laboratories and manufacturing facilities across the world. Owing to the very high source brightness, and the shorter wavelength of the helium (He) ions, it is theoretically possible to focus the ion beam into a smaller probe size relative to that of the electron beam of an SEM. Hence, resolution 2 × – 4 × better than that of comparable SEMs is theoretically possible. In an SEM, an electron beam interacts with the sample and an array of signals are generated, collected and imaged. This interaction zone may be quite large depending upon the accelerating voltage and materials involved. Conversely, the helium ion beam interacts with the sample, but it does not have as large an excitation volume and, thus, the image collected is more surface sensitive and can potentially provide sharp images on a wide range of materials. Compared with an SEM, the secondary electron yield is quite high—allowing for imaging at extremely low beam currents and the relatively low mass of the helium ion, in contrast to other ion sources such as gallium, potentially results in minimal damage to the sample. This article reports on some of the preliminary work being done on the HeIM as a research and measurement tool for nanotechnology and nanometrology being done at NIST. SCANNING 30: 457–462, 2008. Published 2008 by Wiley Periodicals, Inc.  相似文献   

14.
F. H. Li 《Journal of microscopy》1998,190(1-2):249-261
It is shown that the crystallographic image-processing technique based on the weak-phase object approximation and on the combination of high-resolution electron microscopy and electron diffraction is applicable to crystal structure determination. The technique consists of two stages: image deconvolution and phase extension. In the first stage an image taken at an arbitrary defocus condition can be transformed into the structure image with the resolution limited by the resolution of the electron microscope. In the second stage the image resolution is enhanced to the diffraction resolution limit so that most unoverlapped atoms can be resolved individually in the final image. Although the experimental diffraction intensities are available for the image deconvolution, they must be corrected for the phase extension. The proposed empirical method of electron diffraction intensity correction seems effective for obtaining a set of corrected diffraction intensities which are approximately equal to square structure factors.
When the crystal structure under examination belongs to a known typical type, it is easy to propose the structure model by referring to the deconvoluted image which reveals the low-resolution structure, and the high-resolution structure can also be determined by image simulation.  相似文献   

15.
Bruce E. Artz 《Scanning》1983,5(3):129-136
Several examples of the use of digital image processing on SEM images are presented. The emphasis is on image enhancement as opposed to pattern recognition. Examples given include non-linear histogram modification, noise filtering, and frame by frame subtraction. Image processing is done on digitally stored images obtained from a modified SEM. The SEM has been modified to allow minicomputer control of the electron/CRT beam position and blanking. Digitization of the sample signals, such as secondary electron, backscattered electron, and absorbed current is done using a 5 MHz voltage to frequency converter and a 100 KHz timer/sealer combination. Software for image storage and manipulation is also described.  相似文献   

16.
Oho E  Watanabe M 《Scanning》2001,23(1):24-31
The principles of image formation in natural color scanning electron microscopy (NC-SEM) are discussed in detail. This method is based on the frequency characteristic of the human visual system. It is shown that the Mach effect and masking effect are important in the characteristics. The former, which can enhance structural details, is visually similar to the edge effect in secondary electron (SE) images, and the latter is required for proper representation of very degraded color information obtained from a light microscope. When using these effects suitably, an NC-SEM image with the resolution equivalent to that of an SEM image can be acquired, though it is composed of an SEM image and a special video microscopy (VM) image with a resolution much lower than the SEM image of the identical view. The NC-SEM is more effective than the SEM in observation. interpretation, and analysis of various samples with important color information.  相似文献   

17.
Atomic force microscopy (AFM) can be used to image cross-sections of thin-film samples. So far, however, it has mainly been used to study cross-sections of epitaxial systems or integrated circuits on crystalline substrates. In this paper, we show that AFM is a powerful tool to image fractured cross-sections of polycrystalline thin films deposited on crystalline and non-crystalline substrates, yielding unique information on the three-dimensional properties of the cross-sections, with a spatial resolution in the nm range. Original images of three different heterostructure systems are presented: Si(wafer)/SnO2/CdS/CdTe, glass/Mo/Cu(In,Ga)Se2,/CdS/ZnO, and glass/SnO2/WO3. We discuss the results by comparing AFM and scanning electron microscopy (SEM) images, and explain, for the different materials, why the AFM provides useful additional information.  相似文献   

18.
Einspahr JJ  Voyles PM 《Ultramicroscopy》2006,106(11-12):1041-1052
Confocal STEM is a new electron microscopy imaging mode. In a microscope with spherical aberration-corrected electron optics, it can produce three-dimensional (3D) images by optical sectioning. We have adapted the linear imaging theory of light confocal microscopy to confocal STEM and use it to suggest optimum imaging conditions for a confocal STEM limited by fifth-order spherical aberration. We predict that current or near-future microscopes will be able to produce 3D images with 1 nm vertical resolution and sub-Angstrom lateral resolution. Multislice simulations show that we will need to be cautious in interpreting these images, however, as they can be complicated by dynamical electron scattering.  相似文献   

19.
The present report illustrates a computerized method for precise measurement of the diameter of an electron beam. The value of this measurement extends beyond simply providing an accurate estimate of resolution. Other salient areas which will benefit include quantitative X-ray microanalysis, energy loss spectroscopy, diffraction studies, and electron beam lithography. The biological sciences as well as the material sciences will gain enormously from improved accuracy in measurement (control) of beam diameter. It is anticipated that most or all of the mathematical manipulations outlined in this paper will be incorporated into digital electronic packages which will perform the functions automatically for setting the electron beam diameter to the scientist's choice. The purpose of the present report is to indicate some of the principles involved so that as electron microscopy becomes more computerized and automated, the user will have some understanding of what the electronics are doing rather than simply depressing a button or two and ignoring the power of what resides within the walls of the instrument. The performance of a scanning electron microscope (SEM) and a scanning transmission electron microscope (STEM) is roughly determined by the incident electron probe beam size (diameter) involving a sufficient electron current. In the present paper, the diameter of an ultrafine electron beam is measured indirectly from the information given by the blurring of an edge in a STEM or a SEM image of a crystalline specimen with fine, sharp edges. The obtained data were processed by digital image processing methods which give an accurate value of the beam diameter. For confirming the validity of this method, a suitable simulation based on the convolution theorem was performed. By using this measurement, we could measure the diameter of an ultrafine electron beam down to 2 nm, which could not be measured easily by previous techniques.  相似文献   

20.
Scanning electron microscopy in ambient conditions (Air‐SEM) was developed recently and has been used mainly for industrial applications. We assessed the potential application of Air‐SEM for the analysis of biological tissues by using rat brain, kidney, human tooth, and bone. Hard tissues prepared by grinding and frozen sections were observed. Basic cytoarchitecture of bone and tooth was identified in the without heavy metal staining. Kidney tissue prepared using routine SEM methodology yielded images comparable to those of field emission (FE)‐SEM. Sharpness was lower than that of FE‐SEM, but foot process of podocytes was observed at high magnification. Air‐SEM observation of semithin sections of kidney samples revealed glomerular basement membrane and podocyte processes, as seen using conventional SEM. Neuronal structures of soma, dendrites, axons, and synapses were clearly observed by Air‐SEM with STEM detector and were comparable to conventional transmission electron microscopy images. Correlative light and electron microscopy observation of zebrafish embryos based on fluorescence microscopy and Air‐SEM indicated the potential for a correlative approach. However, the image quality should be improved before becoming routine use in biomedical research.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号