首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 84 毫秒
1.
Dual phase steels are characterized by a microstructure consisting of ferrite, martensite, retained austenite, and/or lower bainite. This microstructure can be altered by tempering with accompanying changes in mechanical properties. This paper examines such changes produced in a vanadium bearing dual phase steel upon tempering below 500 °C. The steel mechanical properties were minimally affected on tempering below 200 °C; however, a simultaneous reduction in uniform elongation and tensile strength occurred upon tempering above 400 °C. The large amount of retained austenite (≅10 vol pct) observed in the as-received steel was found to be essentially stable to tempering below 300 °C. On tempering above 400 °C, most of the retained austenite decomposed to either upper bainite (at 400 °C) or a mixture of upper bainite and ferrite-carbide aggregate formed by an interphase precipitation mechanism (at 500 °C). In addition, tempering at 400 °C led to fine precipitation in the retained ferrite. The observed mechanical properties were correlated with these microstructural changes. It was concluded that the observed decrease in uniform elongation upon tempering above 400 °C is primarily the consequence of the decomposition of retained austenite and the resulting loss of transformation induced plasticity (TRIP) as a contributing mechanism to the strain hardening of the steel. B. V. N. RAO, formerly Senior Research Engineer, Analytical Chemistry Department, General Motors Research Laboratories  相似文献   

2.
The mechanical properties and the forming behavior of a dual phase sheet steel have been assessed. The effect of downgaging on forming properties was especially considered because of its importance in lighter weight, energy saving materials. A lower bound method has been used to determine the forming limit diagrams of the steel. Results have shown that the effect of sheet thickness on the stretch formability of the dual phase steel is comparable to some results published previously but not to others. The discrepancy could be due to variations in composition, processing and method used to determine the forming limit diagram of the steel. New formability curves and design guidelines for the steel have been obtained using a recently developed technique for the assessment of formability under simultaneous stretching and bending conditions.  相似文献   

3.
The deformation behavior of a vanadium-strengthened dual phase steel   总被引:2,自引:0,他引:2  
A study has been made of the mechanical properties of dual phase (martensite plus ferrite) structures produced when a V containing HSLA steel is cooled in a controlled manner from either the austenite or austenite plus ferrite phase fields. Such a heat treatment results in the pearlite regions and carbide particles of the standard V steel being replaced by martensite; this leads to a decrease in the yield stress and an increase in ductility while the tensile strength is essentially unchanged. The fatigue of dual phase steels is slightly superior in the high strain life (ductility controlled) region and slightly inferior in the low strain life (yield dominated) region when compared to standard V steel. The replacement of the pearlite and cementite particles which can nucleate cracks, by more ductile martensite islands results in improved Charpy impact properties. The strength and the ductility of the dual phase materials is shown to be in agreement with a theory of composites with two ductile phases. This theory then allows one to understand the relative importance of various microstructural features in controlling strength and ductility. In this way it is found that the key to the superior elongation (at a constant tensile strength) is largely due to the high strength (fine grained), highly ductile ferrite matrix.  相似文献   

4.
孟祥  孙蓟泉  陈银莉  李辉  许黎明 《钢铁》2015,50(4):58-62
 Cr-Mo低合金钢在工业生产中有着重要的应用。CCT曲线是研究过冷奥氏体相转变的重要依据。通过Gleeble-3500热模拟试验机及DIL805A淬火变形膨胀仪模拟了Cr-Mo低合金钢的变形及冷却工艺,并利用超组元模型进行热力学计算分析。理论计算结果表明,形变通过提高了Cr-Mo低合金钢相变过程中的自由能进而影响了碳在奥氏体中的活度及相界面碳平衡摩尔分数,相界面碳平衡摩尔分数的变化带来了相变驱动力与形核驱动力的不同,进而影响相变的孕育期与过冷度。结果表明,相变孕育期与过冷度的变化与理论计算结果一致,热力学计算很好地解释了形变对相变的影响。同时表明形变可以提高铁素体相变临界冷速,当冷速为0.3 ℃/s时,Cr-Mo低合金钢可获得最为均匀细小的铁素体晶粒。适当的变形与冷却工艺对改善Cr-Mo低合金钢组织与性能有着重要的作用。  相似文献   

5.
Tempering of steel   总被引:1,自引:0,他引:1  
Tempering of martensitic steels involves the segregation of carbon, the precipitation of carbides, the decomposition of retained austenite, and the recovery and recrystallization of the martensitic structure. Because these several reactions overlap and occur on such a fine scale, it is only recently that our knowledge of the resulting structures has become reasonably complete. Our present understanding of the processes involved in the tempering of iron-carbon martensites and how they are affected by alloying elements is reviewed.  相似文献   

6.
为满足汽车工业对高档齿轮用钢的需求 ,北满特钢系统研究了Cr-Mo系列钢种的冶金特性 ,成功开发了此系列钢 ,并使其各项技术指标均达到了日本同类产品的水平 ,且取得了良好经济效益。  相似文献   

7.
The tempering behaviour of a dual phase steel of 0.08% C, 1.21% Mn, 1.00% Si, 0.42% Cr, and 0.41% Mo composition with two different martensite contents of 30 and 52%. (obtained by intercritical treatments at 820 and 860°C, respectively) has been studied. The ultimate tensile strength decreased and percentage elongation increased continuously with increasing tempering temperature up to 600°C for both intercritical treatments. The yield strength has, however, increased up to 300°C, beyond which it decreased for the steel with 30% martensite. In contrast it remained almost constant for 52% martensite up to 300°C, beyond which it decreased. The martensite of dual-phase steel for both the intercritical treatments has undergone microstructural changes on tempering that are akin to those of fully martensitic low carbon steels. The SEM fractographs from the as-quenched specimens indicate that the tensile specimens failed by microvoid coalescence with the martensite areas appearing facetted and featureless while those for 600°C tempered condition by the formation of equiaxed dimples.  相似文献   

8.
利用铁素体+马氏体+贝氏体的初始显微组织结合冷轧和连续退火的方法达到了细化晶粒的目的,通过这种方式制备的双相钢中有63.8%的铁素体晶粒尺寸分布于0.5~1μm,有53%的马氏体晶粒尺寸分布于0.5~1μm.针对该现象研究了基于铁素体+马氏体+贝氏体初始显微组织含钒超细晶双相钢的晶粒细化机制.分析认为,细化机制主要有三个方面:第一是形变对显微组织的细化,包括为了得到铁素体+马氏体+贝氏体的初始显微组织而进行的热轧和冷轧;第二是冷轧态显微组织的再结晶和快速奥氏体化;第三是钒的析出物阻碍奥氏体的长大.  相似文献   

9.
通过模拟实验研究了钛微合金化热轧双相钢的连续冷却转变曲线及终轧温度对组织的影响规律,获得了可行的工艺窗口,并进行了验证性热轧实验.在冷却速率小于5℃·s-1及温度在625~725℃时,实验钢可以形成先共析铁素体.随着终轧温度升高,组织中铁素体及马氏体含量先升高后降低,但幅度不大.同时,当终轧温度较高时,铁素体显微硬度增加,析出强化作用增加.当终轧温度及缓冷温度分别为840℃及700℃时,获得了抗拉强度为672 MPa及屈强比为0.61的性能良好的热轧双相钢.经计算,铁素体组织中析出强化量为78.5 MPa.  相似文献   

10.
The kinetics of isothermal temper embrittlement have been studied in a 3 pet Cr-Mo turbine disc steel at tempering temperatures from 450 to 580‡C. In the cast examined embrittlement results principally from the segregation of phosphorus to prior austenite grain boundaries and it is shown that the present results are consistent with an equilibrium segregation process. These data have been used to predict the degree of embrittlement resulting from continuous cooling from the tempering temperature and the results have been compared with laboratory tests for a wide range of cooling rates. The probable effect of post-tempering cooling rate on toughness and the feasibility of using retempering treatments as a means of rehabilitating temper embrittled components are also considered.   相似文献   

11.
The kinetics of isothermal temper embrittlement have been studied in a 3 pet Cr-Mo turbine disc steel at tempering temperatures from 450 to 580‡C. In the cast examined embrittlement results principally from the segregation of phosphorus to prior austenite grain boundaries and it is shown that the present results are consistent with an equilibrium segregation process. These data have been used to predict the degree of embrittlement resulting from continuous cooling from the tempering temperature and the results have been compared with laboratory tests for a wide range of cooling rates. The probable effect of post-tempering cooling rate on toughness and the feasibility of using retempering treatments as a means of rehabilitating temper embrittled components are also considered.  相似文献   

12.
Dual-phase, high-strength steel sheet has been prestrained in plane-strain tension. Residual hardening and ductility properties were evaluated by performing subsequent uniaxial tensile tests in either co-axial or noncoaxial principal strain axis orientations. In contrast to similar work on aluminum-killed 1008/1010 steel sheet, only minor changes were found in the subsequent flow behavior of dual-phase steel, and no significant difference was found between the two orientations. The small effect of an abrupt strain path change observed in this study is consistent with the low work hardening rate of this alloy.  相似文献   

13.
基于过冷奥氏体动态相变的思想,通过两道次压缩变形结合控制冷却的热模拟轧制工艺,获得不同贝氏体含量及形态的细晶铁素体贝氏体双相钢。通过显微组织观察及力学性能测试,考察了第二相贝氏体特征对双相钢室温拉伸变形行为的影响。研究结果表明,形变后快速冷却可获得无碳板条状贝氏体,较慢的冷速或在贝氏体转变区保温处理可获得粒状贝氏体。贝氏体体积分数大于20%左右的细晶铁素体/贝氏体双相钢具有低的屈服强度,高的抗拉强度,高的伸长率,低屈强比以及连续屈服特性。屈服强度既与铁素体晶粒尺寸相关,也与贝氏体形态和数量相关。板条贝氏体引起的屈服强度提高大于粒状贝氏体,粒状贝氏体具有比板条贝氏体更好的塑性。  相似文献   

14.
王健  房锦超  张玉文 《中国冶金》2014,24(11):43-45
在热轧双相钢中,终轧温度、卷曲温度、控冷时间和控冷温度对铁素体晶粒的大小和马氏体的形态、分布和含量都有重要影响,直接影响双相钢力学性能。通过对双相钢动态CCT曲线的模拟,制定出了合理的工艺制度,系统分析了热轧双相钢DP600热轧生产过程中终轧温度、卷取温度、控冷时间和控冷温度对双相钢的影响,对热轧双相钢的关键技术参数进行了研究,最终确定了合适的双相钢热轧生产工艺。  相似文献   

15.
简要介绍了热镀锌和双相钢的发展历程,说明了发展热镀锌双相钢的必要性。介绍了国内外的热镀锌双相钢的生产和应用情况。  相似文献   

16.
在Gleeble-3500热模拟试验机上进行冷轧超高强度双相钢的连续退火工艺研究,利用光学显微镜、扫描电镜、透射电镜和拉伸试验研究了连续退火过程中各个参数对1000MPa级冷轧双相钢组织性能的影响.结果表明:试验用钢在退火温度800℃下保温80s,可以得到抗拉强度为1030MPa、延伸率为14%超高强双相钢;随着退火温度的升高,屈服强度和抗拉强度降低.当退火温度为830℃时,显微组织中粒状的非马氏体组织明显增多.过时效温度低于300℃时,屈服强度和抗拉强度变化不大;当过时效温度超过300℃时,抗拉强度急剧下降,屈服强度先降低后升高,在过时效温度为360℃时开始出现屈服平台.  相似文献   

17.
This study concentrates on the annealing effects of a laser-treated area by a successive laser pass in a plain carbon, a chromium, and a tungsten steel. Transmission electron microscopy (TEM), optical microscopy (OM), and wear and hardness measurements revealed substantial effects on the properties and microstructure of the plain carbon and tungsten steel which have a partly martensitic cellular structure after the first laser treatment. Close to the melt zone, martensite was again formed, whereas further away, nucleation of carbides was observed. The hardness increased in the former area and decreased in the latter. An analytical model sustained that the softening is due to carbon diffusion and martensite tempering. The softer zone in the tungsten steel exhibited a decrease of wear rate relative to the not-annealed zone in contrast to the plain carbon steel. Besides some diffusion, no annealing effects were found in the chromium steel which possessed an austenitic cellular structure after the first laser treatment. Formerly Graduate Students, Department of Applied Physics, Materials Science Centre, University of Groningen  相似文献   

18.
19.
在生产过程中,热镀锌双相钢表面出现明显的山峰纹缺陷,严重影响热镀锌双相钢产品的表面质量。缺陷处有漏镀、锌层不均和抑制层形成不良等特征,基板表层有脱碳及微裂纹、表层毛刺突起等现象。通过分析认为,基板表层微裂纹是造成热镀锌双相钢表面山峰纹的根本原因。采用低温快烧的加热制度,适当降低轧制温度,合理控制除鳞及酸洗工艺,降低热卷厚度以降低冷轧压下率,可有效控制冷轧板浅表层微裂纹的形成,从而有效解决热镀锌双相钢表面山峰纹问题。  相似文献   

20.
热镀锌双相钢表面粗糙问题分析与控制   总被引:1,自引:0,他引:1  
李研  张亮亮  于洋  刘鸿明  齐达  高小丽 《钢铁》2017,52(6):94-100
 目前强度级别较高的双相钢产品已经可以普遍采用热镀锌工艺生产,热镀锌双相钢在生产过程中,表面出现明显的粗糙缺陷,形成边部与中部的色差,严重影响热镀锌双相钢产品表面质量。粗糙缺陷伴随粗糙度异常升高、锌层不均、抑制层形成不良、基板表面微裂纹等现象。分析认为,基板表面微裂纹是造成热镀锌双相钢表面粗糙的主要原因。热轧态组织和冷轧压下率是决定冷硬板浅表层微裂纹形成的关键因素。通过优化卷取温度及热轧卷厚度,改善热轧态组织及降低冷轧压下率,可有效控制冷轧板表面浅表层微裂纹的形成,从而良好解决热镀锌双相钢表面粗糙问题。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号