首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In this study, we fabricated poly(ethylene terephthalate) (PET)/clay, PET/poly(ethylene glycol‐co‐1,3/1,4‐cyclohexanedimethanol terephthalate) (PETG), and PET/PETG/clay nanocomposite plates and biaxially stretched them into films by using a biaxial film stretching machine. The tensile properties, cold crystallization behavior, optical properties, and gas and water vapor barrier properties of the resulting films were estimated. The biaxial stretching process improved the dispersion of clay platelets in both the PETG and PET/PETG matrices, increased the aspect ratio of the platelets, and made the platelets more oriented. Thus, the tensile, optical, and gas‐barrier properties of the composite films were greatly enhanced. Moreover, strain‐induced crystallization occurred in the PET/PETG blend and in the amorphous PETG matrix. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42207.  相似文献   

2.
HDPE/LLDPE/POE薄膜性能的研究   总被引:3,自引:0,他引:3  
采用线型低密度聚乙烯(LLDPE)和热塑性弹性体乙烯-辛烯共聚物(POE)对高密度聚乙烯(HDPE)薄膜进行改性,研究了LLDPE和POE对共混体系薄膜力学性能、加工性能的影响,探讨了LLDPE增强HDPE的机理。结果表明,加入一定量LLDPE,使HDPE/LLDPE薄膜的拉伸强度较纯HDPE薄膜有所增加,而单位冲击破损质量则有所下降。当w(LLDPE)为15%时,HDPE/LLDPE薄膜的拉伸强度提高21.6%,薄膜的单位冲击破损质量降低23.0%。在HDPE/LLDPE/POE三元体系中,当w(POE),w(LLDPE)分别为10%,15%时,薄膜的拉伸强度、单位冲击破损质量、断裂伸长率比纯HDPE薄膜分别提高2.3%,113%。36.0%,综合性能良好。  相似文献   

3.
Silicon oxide (SiOx) film deposition on the surface of oriented poly(propylene) (OPP) films was done to form a new oxygen gas barrier material using plasma polymerization of the tetramethoxysilane (TMOS)/O2 mixture. The SiOx film deposition on OPP films never improved oxygen gas barrier properties. The inefficacy of the SiOx deposition was due to poor adhesion at the interface between the deposited SiOx and OPP films and also to the formation of cracks in the deposited SiOx film. If prior to the SiOx film deposition surface modification of OPP films was done by a combination of the argon plasma treatment and TMOS coupling treatment, this contributed effectively to strong adhesion leading to success in the SiOx deposition on the OPP film surface, and then the oxygen gas barrier ability was improved. The oxygen permeation rate through the SiOx‐deposited OPP film was decreased from 2230 to 37–52 cm3/m2/day/atm, which was comparable to that of poly(vinylidene chloride), 55 cm3/m2/day/atm at a film thickness of 11 μm. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 78: 2389–2397, 2000  相似文献   

4.
In this study, various poly(ethylene terephthalate) (PET) and linear low‐density polyethylene (LLDPE) with maleic anhydride‐grafted LLDPE (LLDPE‐g‐MAH) compatibilizer were melt blended under an elongational flow. A novel extrusion device, eccentric rotor extruder (ERE), was developed to supply such flow during the process. Including morphology, mechanical properties, melting behavior, and rheological behavior were studied. The morphological study showed that the compatibility between LLDPE and PET was greatly improved with LLDPE loading up to 80 wt %. Mechanical tests indicated that LLDPE could toughen PET to some extent. Moreover, a comparison of samples prepared between ERE and conventional extruder was made and demonstrated the sample prepared by ERE can exhibit better mechanical properties. Differential scanning calorimetry results revealed that PET can promote the crystallinity of LLDPE. Rheological behavior indicated that the complex viscosity of the blends exhibited strong shear thinning phenomenon with increasing LLDPE content, particularly in high‐frequency range blend with the LLDPE weight ratio of 80 wt % was more sensitivity to shear rate than neat LLDPE. The G′‐G″ curves of the blends also revealed that the microstructure of the blends changed significantly with the addition of LLDPE which was consistent with the scanning electron micrographs that PET particles became smaller and distributed more uniform with increasing LLDPE content. Furthermore, the blends showed similar stress relaxation mechanism with adding LLDPE content from 60 to 100 wt %. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46489.  相似文献   

5.
In the present work, we report the effect of low-temperature plasma treatment on thermal, mechanical, and biodegradable properties of polymer composite blown films prepared from carp fish scale powder (CFSP) and linear low-density polyethylene (LLDPE). The CFSP was melt compounded with LLDPE using a filament extruder to prepare 1, 2, and 3 wt.% of CFSP in LLDPE polymer composite filaments. These filaments were further pelletized and extruded into blown films. The blown films extruded with 1, 2, and 3 wt.% of CFSP in LLDPE were tested for thermal and mechanical properties. It was observed that the tensile strength decreased with the increased loading content of CFSP, and 1% CFSP/LLDPE exhibited the highest tensile strength. To study the effect of low-temperature plasma treatment, 1% CFSP/LLDP polymer composite with high tensile strength was plasma treated with O2 and SF6 gas before blow film extrusion. The 1% CFSP/LLDPE/SF6-extruded blown films showed increased thermal decomposition, crystallinity, tensile strength, and modulus. This may be due to the effect of crosslinking by the plasma treatment. The maximum thermal decomposition rate, crystallinity %, tensile strength, and modulus obtained for 1% CFSP/LLDPE/SF6 film were 500.02°C, 35.79, 6.32 MPa, and 0.023 GPa, respectively. Furthermore, the biodegradability study on CFSP/LLDPE films buried in natural soil for 90 days was analyzed using x-ray fluorescence. The study showed an increase in phosphorus and calcium mass percent in the soil. This is due to the decomposition of the hydroxyapatite present in the CFSP/LLDPE biocomposite.  相似文献   

6.
Poly(ethylene terephthalate) (PET)/linear low‐density polyethylene (LLDPE) blends (75/25), with contents of poly(ethylene‐co‐methacrylic acid) partially neutralized with lithium (PEMA–Li) that were systematically changed from 0 to 45% relative to the LLDPE, were obtained by direct injection molding in an attempt to (1) ameliorate the performance of the binary blend and (2) find the best compatibilizer content. PEMA–Li did not modify the PET or LLDPE amorphous‐phase compositions or the crystalline content of PET. However, PEMA–Li did lead to a nucleation effect and to the presence of a second smaller and less perfect crystalline structure. PET induced a fractional crystallization in LLDPE that remained in the presence of PEMA–Li and reduced the crystallinity of LLDPE. The ternary blends showed two similar dispersed LLDPE and PEMA–Li phases with small subparticles, probably PET, inside. The compatibilizing effect of PEMA–Li was clearly shown by the impressive increase in the break strain, along with only small decreases in the modulus of elasticity and in the tensile strength. With respect to the recycling possibilities of LLDPE, a ternary blend with the addition of 22.5% PEMA–Li, which led to very slight modulus and yield stress decreases with respect to the binary blend and a break strain increase of 480%, appeared to be the most attractive. However, the highest property improvement appeared with the addition of 37.5% PEMA–Li, which led to elasticity modulus and tensile strength decreases of only 9%, along with a very high break strain increase (760%). © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 87: 1322–1328, 2003  相似文献   

7.
The concentration dependence and temperature dependence of the diffusion coefficient, as discussed in Part I, are validated with literature data on poly(styrene) and on poly(vinylacetate). The effect on diffusivity, of a uniaxial tensile stress state and of a biaxial tensile stress state, is measured with permeation tests on stretched poly(ethyleneterephthalate) (PET) films. The influence of semi-crystallinity is briefly discussed. Further, diffusivity measurements under a tensile stress state, under a compressive stress state, and under a pure shear stress state are performed on Ultem® polyimide films, using a modified sorption technique. Good agreement between theoretical predictions and experiment is found. Finally, predictions by the solubility model discussed in Part I are compared with data on low density polyethylene and on Ultem polyimide.  相似文献   

8.
In this article, a series of amphiphilic graft copolymers, namely poly(higher α‐olefin‐copara‐methylstyrene)‐graft‐poly(ethylene glycol), and poly(higher α‐olefin‐co‐acrylic acid)‐graft‐poly(ethylene glycol) was used as modifying agent to increase the wettability of the surface of linear low‐density polyethylene (LLDPE) film. The wettability of the surface of LLDPE film could be increased effectively by spin coating of the amphiphilic graft copolymers onto the surface of LLDPE film. The higher the content of poly(ethylene glycol) (PEG) segments, the lower the water contact angle was. The water contact angle of modified LLDPE films was reduced as low as 25°. However, the adhesion between the amphiphilic graft copolymer and LLDPE film was poor. To solve this problem, the modified LLDPE films coated by the amphiphilic graft copolymers were annealed at 110° for 12 h. During the period of annealing, heating made polymer chain move and rearrange quickly. When the film was cooled down, the alkyl group of higher α‐olefin units and LLDPE began to entangle and crystallize. Driven by crystallization, the PEG segments rearranged and enriched in the interface between the amphiphilic graft copolymer and air. By this surface modification method, the amphiphilic graft copolymer was fixed on the surface of LLDPE film. And the water contact angle was further reduced as low as 14.8°. The experimental results of this article demonstrate the potential pathway to provide an effective and durable anti‐fog LLDPE film. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

9.
Viscoelastic and shrinkage characteristics of five ultrathin polymeric films are presented. These films include poly(ethylene terephthalate) or PET, poly(ethylene naphthalate) or PEN, an aromatic polyamide (ARAMID), a polyimide (PI), and poly(benzoxazole) or PBO. PET film is currently the standard substrate used for magnetic tapes, and the other four films represent alternative substrates with improved material properties. Thicknesses of the films range from 14.4 μm for PET to 4.4 μm for ARAMID. A creep apparatus is used to measure the viscoelastic and shrinkage characteristics of the films. The largest amount of creep compliance was measured for PET followed by PI, PEN, ARAMID, and PBO. Creep velocity was highest for PET and PI, followed by ARAMID, PEN, and PI. Shrinkage measurements at 50°C for 100 h show that PEN shrinks more than all the other substrates. Time–temperature superposition is used to predict long-term creep behavior, and relationships between polymeric structure and viscoelastic behavior are also discussed. Based on their relative cost and creep behavior, PEN and ARAMID substrates appear to be suitable alternatives to PET. © 1995 John Wiley & Sons, Inc.  相似文献   

10.
Polymer films produced by tubular film blowing have a unique morphology that results from the large elongational flow in melt draw down and biaxial orientation due to bubble blow-up. Three high density polyethylene (HDPE) blown films were produced under similar processing conditions from resins which varied principally in molecular weight (MW) and molecular weight distribution (MWD). Scanning electron microscopy (SEM) showed that the lower MW and narrower MWD resin produced film which had a uniaxial orientation of stacked lamellar crystals. The higher MW (HMW) and broad MWD resins produced films consisting of a network of nearly orthotropically oriented lamellar stacks. Greater high molecular weight fraction (MW > 106) in the resin resulted in more random orientation. The influence of these different structures on properties was studied by examining the plastic zone formation at crack tips and uniaxial tensile deformation with the SEM and comparing them to the macroscopic stress-strain behavior. A continuous deformation of the network structure was observed in the HMW films. Lamellar deformation occurred primarily in regions of stacks oriented parallel to the tensile axis. Macroscopic yield occurred at 6 to 10 percent strain via a shearing and opening the lamellar crystals. Irreversible deformation occurred from ?50 to 400 percent strain by transformation of the oriented lamellae to microfibrils. Eventually all the lamellar stacks in the network become aligned with the tensile axis. This process was found to improve the tear resistance in the crack propagation experiments. The lamellar stacks in the network orient perpendicular to the crack independent of crack propagation direction, insuring a more uniform transmission of stress and preventing local yielding. The tensile modulus, yield stress, and ultimate strength were highest in the film containing more high molecular weight polymer.  相似文献   

11.
Biaxially oriented poly(ethylene terephthalate) (PET) films have been characterized by small angle and wide angle x-ray scattering. The films were studied at various rotational angles to the impinging beam and orientations relative to axes in three directions in the film were obtained. Pole figures were developed for both the major small angle scattering peak and wide angle diffraction peaks. These are used to interpret structural changes in the films associated with various degrees of biaxial stretching and subsequent constrained annealing.  相似文献   

12.
Film extrusion and welding of biodegradable polymer films are important processes that must be considered in the development of compostable packaging materials. Film extrusion of poly(lactic acid) (PLA) has proved to be rather difficult because of its brittleness, but the flexibility of PLA can be improved by incorporation of a plasticizer in the material. PLA was plasticized with triacetine (TAc) and tributyl citrate (TbC). The blended materials and neat PLA were film extruded and the films were welded with constant heat (CH) welding. The films were analyzed by means of gas chromatography (GC), dynamic mechanical analysis (DMA), differential scanning calorimetry (DSC), gel permeation chromatography (GPC), contact angle measurements, and tensile testing. Storage of the plasticized films resulted in an increased crystallinity and changes in the film properties, rendering CH welding difficult. The welding process had no influence on thermal properties, such as cold crystallization temperature, melting temperature, crystallization temperature, and degree of crystallinity, of neat PLA but caused significant changes in the crystallinity of the plasticized materials. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 3239–3247, 2003  相似文献   

13.
The change of the processing parameters of a blown film operation alters the mechanical and optical properties of the films. This work studied the influence of some of these parameters on the properties of blown films made of blends of linear low‐density polyethylene (LLDPE) and LDPE. Correlations between the crystalline biaxial orientations of these films and the mechanical properties were found. The crystalline biaxial orientation was measured by IR following the Krishnaswamy approach. The a axis of the unit cell was oriented along the machine direction (MD) at all LDPE concentrations, and it was not affected by the blow‐up ratio (BUR). In contrast, the b axis changed its orientation from orthogonal to MD to along the transverse direction (TD), and it was affected by the BUR. Finally, the c axis changed its orientation from equiplanar between the MD and TD to along the thickness of the film, and it was influenced by the BUR. The decrease of the tensile mechanical properties along the MD with the increase in the amount of LDPE in the blends was attributed to the tilting of the c axis toward the film thickness. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 3161–3167, 2006  相似文献   

14.
Film casting and biaxial stretching of a series of polyester thermoplastic elastomers (TPEs) were studied. Biaxial orientation in the stretched films was characterized by wide‐angle X‐ray diffraction and birefringence measurements. Biaxial orientation factors were determined. The X‐ray diffraction and birefringence clearly indicated the development of planar biaxial orientation in the stretched films with biaxial stretching. The phenyl groups in the stretched PBT and TPE films gradually became more parallel to the film surfaces with increasing biaxial orientation. The lower the PBT content in the stretched TPE films, the lower the planar biaxial orientation achieved. The β form of crystalline PBT was found only in the stretched PBT films, but not in the TPE films.  相似文献   

15.
Erucamide is incorporated into polymer films to reduce their coefficient of friction (COF). Such COF reduction is important in packaging lines where the performance of the film in contact with rollers can be governed by the frictional characteristics of the film. This research explores the COF behavior of multilayer films with either polyolefin plastomer (POP) or linear low‐density polyethylene (LLDPE) as the skin layer. Film‐on‐metal COF testing was performed repetitively with the same piece of film to investigate the extent of COF change with the number of runs for cast and blown films. Results showed that the COF of the film increased with the number of runs and plateaued at a higher steady state value. Complementary analysis conducted with atomic force microscopy (AFM) revealed that initially erucamide was removed from the film surface exposing the bare polymer film to the metal plate, but as more runs were performed the erucamide crystals were smeared over the film surface re‐covering the previously exposed film surface. Several combinations of slip and antiblock (AB) loadings were used to study their effects on the steady state COF obtained from repetitive testing on blown films. Results showed that the steady state COF decreased with the addition of both slip and AB, except for the lowest chosen loadings of 1250 ppm slip and 3000 ppm AB.  相似文献   

16.
Summary A reactive type nonionic surfactant, monostearic acid monomaleic acid glycerol diester (MMGD) was synthesized in our laboratory. Grafting-copolymerization of linear low density polyethylene (LLDPE) with MMGD was carried out by using β ray irradiation in air in a twin-screw extruder. Evidence of the grafting of MMGD as well as its extent was determined by Fourier-transformed infrared (FT-IR) spectroscopy. The effects of monomer concentration, reaction temperature and screw run speed on degree of grafting were studied systematically. The thermal behavior of LLDPE-g-MMGD was investigated by using differential scanning calorimety (DSC). Compared with neat LLDPE, the crystallization temperature (Tc) of LLDPE-g-MMGD increased about 3 °C, and the melting enthalpy (ΔHm) decreased with increase of MMGD content. It showed that the grafted MMGD monomer onto LLDPE acted as a nucleating agent. The tensile properties and light transmission of blown films were determined. Comparing with neat LLDPE film, no obvious changes could be found for the tensile strength, elongation at break and right angle tearing strength of LLDPE-g-MMGD film. The wettability is expressed by the water contact angle. With an increasing percentage of MMGD, the contact angles of water on film surface of LLDPE-g-MMGD decrease monotonically. Accelerated dripping property of film samples was investigated. The dripping duration of LLDPE-g-MMGD film and commercial antifog dripping film at 60 °C were 52 days and 17 days, respectively.  相似文献   

17.
Polarised attenuated total reflection (ATR) infrared spectroscopy has been used to quantify biaxial orientation in commercially manufactured poly(ethylene terephthalate) (PET) films and stretch-blow moulded bottles. Using a single-bounce accessory with a high refractive index element, and applying appropriate data normalisation prior to measuring band intensities, measurement of the average square direction cosines that describe the orientation is simple. Using this technique it was shown that uniaxially drawn PET films were actually biaxially oriented, and there were significant gradients in orientation through the film thickness. Bulk measurements, or methods that assume uniaxial orientation, would give incorrect results from these materials. The bottles exhibited complex orientation patterns that depended on preform and mould design, and again there were strong orientation gradients through the bottle walls. Kratky's model (pseudo-affine) was used in an attempt to predict the biaxial orientation gradients as a function of preform and bottle dimensions.  相似文献   

18.
以绿色可再生的蓖麻油(CO)和环氧大豆油(ESBO)为原料制备了植物油基多元醇,用植物油基多元醇代替传统的石油类多元醇,与异氟尔酮二异氰酸酯(IPDI)和聚乙二醇(PEG)400或CO制备的预聚体在无溶剂条件下混合制备了4种脂肪族聚氨酯胶黏剂。并对制备的聚氨酯胶黏剂涂膜进行了热重分析、差示扫描量热分析、拉伸性能测试、剥离及剪切强度测试。结果表明,以PEG400和植物油基多元醇共同改性的聚氨酯胶黏剂剥离强度达到约200 N/m,剪切强度最高为4.9 N/mm^2;完全以植物油类原料制备的聚氨酯胶黏剂胶膜具有更好的耐热分解性能以及耐水性。  相似文献   

19.
Various linear low‐density polyethylene (LLDPE; density ~ (0.920 g/cm3)) resins that encompass those polymerized using Ziegler‐Natta, metallocene, and chromium oxide based catalysts were blown into film at similar process conditions, and the tensile properties of the resulting films were investigated in relation to their orientation characteristics. The tensile properties of the subject blown films were observed to be significantly different from those of isotropic/un‐oriented polyethylene specimens of similar density (crystallinity). Further, the tensile properties were different in the machine and transverse directions. These were explained in terms of the orientation and lamellar organization characteristics of the LLDPE blown films. Investigation of the temperature dependence (between ?50°C and +50°C) of these tensile properties indicated an increase in modulus, yield stress and break stress with decreasing temperature pointing to the possible role played by the decreased mobility of the non‐crystalline phase at lower temperatures. Excellent correlation between the Elmendorf tear properties of the LLDPE blown films and their tensile yield characteristics was observed. This added substantial credibility to previous hypotheses that specimen stretching plays a significant role in Elmendorf tear tests and further supported the previously identified structural features and microstructural deformation mechanisms that are deemed responsible for the discernment of LLDPE blown film tear resistance.  相似文献   

20.
Tensile and dynamic mechanical properties of improved ultrathin polymeric films for magnetic tapes are presented. These films include poly(ethylene terephthalate) or PET, poly(ethylene naphthalate) or PEN, and aromatic polyamide (ARAMID). PET film is currently the standard substrate used for magnetic tapes; thinner tensilized‐type PET, PEN, and ARAMID were recently used as alternate substrates with improved material properties. The thickness of the films ranges from 6.2 to 4.8 μm. Young's modulus of elasticity, F5 value, strain‐at‐yield, breaking strength, and strain‐at‐break were obtained at low strain rates by using a tensile machine. Storage (or elastic) modulus, E′, and the loss tangent, tan δ, which is a measurement of viscous energy dissipation, are measured by using a dynamic mechanical analyzer at temperature ranges of ?50 to 150°C (for PET), and ?50 to 210°C (for PEN and ARAMID), and at a frequency range of 0.016 to 29 Hz. Frequency–temperature superposition was used to predict the dynamic mechanical behavior of the films over a 28 decade frequency range. Results show that ARAMID and tensilized films tend to have higher strength and moduli than standard PET and PEN. The rates of decrease of storage modulus as a function of temperature are lower for PET films than those for PEN and ARAMID films. Storage modulus for PEN films are higher than that for PET films at high frequencies, but this relationship reverses at low frequencies. ARAMID has the highest modulus and strength among the films in this study. The relationship between polymeric structure and mechanical properties are also discussed. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 83: 2225–2244, 2002  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号