首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 171 毫秒
1.
命名实体识别(NER)作为自然语言处理的重要部分,在信息抽取和知识图谱等任务中得到广泛应用。然而目前中文预训练语言模型通常仅对上下文中的字符进行建模,忽略了中文字符的字形结构。提出2种结合五笔字形的上下文相关字向量表示方法,以增强字向量的语义表达能力。第一种方法分别对字符和字形抽取特征并联合建模得到字向量表示,第二种方法将五笔字形作为辅助信息拼接到字向量中,训练一个基于字符和五笔字形的混合语言模型。实验结果表明,所提两种方法可以有效提升中文NER系统的性能,且结合五笔字形的上下文相关字向量表示方法的系统性能优于基于单一字符的语言模型。  相似文献   

2.
针对电机领域命名实体识别困难、精度不高的问题,提出了一种基于BERT和多窗口门控CNN的电机领域命名实体识别模型。该模型首先利用BERT预训练模型生成句子的字向量序列,根据电机领域文本的上下文动态微调字向量,增强字向量的语义表达;其次,构建具有全局时序特征感知单元和多窗口门控CNN单元的双分支特征提取层,形成句子的多级语义特征表示;最后,通过CRF对字符序列进行解码,得到每个字符对应的标签。在小规模的自建电机领域数据集与多组模型进行的对比实验结果表明,该模型命名实体识别性能均优于其他模型,macro-F1值达到了90.16%,验证了该方法对电机领域实体识别的有效性。  相似文献   

3.
中文命名实体识别主要包括中文平面命名实体识别和中文嵌套命名实体识别两个任务,其中中文嵌套命名实体识别任务难度更大。提出了一个基于词汇增强和表格填充的统一模型TLEXNER,该模型能够同时处理上述任务。该模型首先针对中文语料分词困难的问题,使用词典适配器将词汇信息融合到BERT预训练模型,并且将字符与词汇组的相对位置信息集成到BERT的嵌入层中;然后通过条件层归一化和双仿射模型构造并预测字符对表格,使用表格建模字符与字符之间的关系,得到平面实体与嵌套实体的统一表示;最后根据字符对表格上三角区域的数值判断实体类别。提出的模型在平面实体的公开数据集Resume和自行标注的军事领域嵌套实体数据集上F1分别是97.35%和91.96%,证明了TLEXNER模型的有效性。  相似文献   

4.
命名实体识别是将自然语句中的姓名,地点,组织等实体抽取出来,是自然语言处理的一个上游任务.基于文档级记忆的命名实体识别是将所有识别过的语句信息融入当前待识别的语句中,从而加强当前句子的语义表达,以获得更好的识别效果.鉴于当前文档级记忆的命名实体识别都是将所有记忆信息混合融入当前语句中,忽略了不同标签类别的记忆信息对当前语句的影响不同,论文提出了一种融入分类记忆信息的中文命名实体识别方法,将当前输入语句与记忆模块中已按类别分成B、M、E、S四份的记忆信息利用注意力机制相匹配,找到每个字语义最相近的不同类别的若干个记忆字信息,将得到的记忆信息分别融入当前语句经过LSTM输出后得到的输出向量信息中,得到融入记忆信息的输出向量表示.这样可以更全面地表示当前字向量属于不同标签的可能.论文方法在中文命名实体识别经典数据集Resume简历数据集中得到了很好的实验效果.  相似文献   

5.
大多数中文命名实体识别模型中, 语言预处理只关注单个词和字符的向量表示, 忽略了它们之间的语义关系, 无法解决一词多义问题; Transformer特征抽取模型的并行计算和长距离建模优势提升了许多自然语言理解任务的效果, 但全连接结构使得计算复杂度为输入长度的平方, 导致其在中文命名实体识别的效果不佳. 针对这些问题, 提出一种基于BSTTC (BERT-Star-Transformer-TextCNN-CRF)模型的中文命名实体识别方法. 首先利用在大规模语料上预训练好的BERT模型根据其输入上下文动态生成字向量序列; 然后使用星型Transformer与TextCNN联合模型进一步提取句子特征; 最后将特征向量序列输入CRF模型得到最终预测结果. 在MSRA中文语料上的实验结果表明, 该模型的精确率、召回率和F1值与之前模型相比, 均有所提高. 与BERT-Transformer-CRF模型相比,训练时间大约节省了65%.  相似文献   

6.
针对以往句子在文本编码后不能获得高效的特征信息,提出一种基于双流特征互补的嵌套命名实体识别模型。句子在嵌入时以单词的字级别和字符级别两种方式嵌入,分别通过神经网络Bi-LSTM获取句子上下文信息,两个向量进入低层级与高层级的特征互补模块,实体词识别模块和细粒度划分模块对实体词区间进行细粒度划分,获取内部实体。实验结果表明,模型相较于经典模型在特征提取上有较大的提升。  相似文献   

7.
基于ALBERT-BGRU-CRF的中文命名实体识别方法   总被引:1,自引:0,他引:1  
命名实体识别是知识图谱构建、搜索引擎、推荐系统等上层自然语言处理任务的重要基础,中文命名实体识别是对一段文本序列中的专有名词或特定命名实体进行标注分类。针对现有中文命名实体识别方法无法有效提取长距离语义信息及解决一词多义的问题,提出一种基于ALBERT-双向门控循环单元(BGRU)-条件随机场(CRF)模型的中文命名实体识别方法。使用ALBERT预训练语言模型对输入文本进行词嵌入获取动态词向量,有效解决了一词多义的问题。采用BGRU提取上下文语义特征进一步理解语义,获取长距离词之间的语义特征。将拼接后的向量输入至CRF层并利用维特比算法解码,降低错误标签输出概率。最终得到实体标注信息,实现中文命名实体识别。实验结果表明,ALBERT-BGRU-CRF模型在MSRA语料库上的中文命名实体识别准确率和召回率分别达到95.16%和94.58%,同时相比于片段神经网络模型和CNN-BiLSTM-CRF模型的F1值提升了4.43和3.78个百分点。  相似文献   

8.
针对电机领域实体识别精度较低的问题,提出一种融合BERT预训练语言模型的中文命名实体识别方法。利用BERT预训练语言模型增强字的语义表示并按照上下文特征动态生成字向量,将字向量序列输入双向长短期记忆神经网络进行双向编码,同时通过条件随机场算法标注出实体识别结果。根据电机文本特点对自建数据集进行标注,并将电机领域实体划分为实物、特性描述、问题/故障、方法/技术等4个类别。实验结果表明,与基于BiLSTM-CRF、BiLSTM-CNN和BiGRU的实体识别方法相比,该方法具有更高的准确率、召回率和F1值,并且有效解决了电机领域命名实体识别任务中标注数据不足及实体边界模糊的问题。  相似文献   

9.
针对现有命名实体识别方法主要考虑单个句子内的上下文信息,很少考虑文档级上下文影响的问题,文中提出基于机器阅读理解的中文命名实体识别方法,利用阅读理解思想,充分挖掘文档级的上下文特征,支撑实体识别.首先,针对每类实体,将实体识别任务转化为问答任务,构建问题、文本及实体答案三元组.然后,将三元组信息通过双向Transformer编码器进行预训练,再通过卷积神经网络捕捉文档级文本上下文信息.最后通过二进制分类器实现实体答案预测.在MSRA、人民日报公开数据集和自建数据集上的命名实体识别对比实验表明,文中方法性能较优,阅读理解思想对实体识别具有较好的作用.  相似文献   

10.
命名实体识别是自然语言处理中的重要任务,且中文命名实体识别相比于英文命名实体识别任务更具难度。传统中文实体识别模型通常基于深度神经网络对文本中的所有字符打上标签,再根据标签序列识别命名实体,但此类基于字符的序列标注方式难以获取词语信息。提出一种基于Transformer编码器的中文命名实体识别模型,在字嵌入过程中使用结合词典的字向量编码方法使字向量包含词语信息,同时针对Transformer编码器在注意力运算时丢失字符相对位置信息的问题,改进Transformer编码器的注意力运算并引入相对位置编码方法,最终通过条件随机场模型获取最优标签序列。实验结果表明,该模型在Resume和Weibo中文命名实体识别数据集上的F1值分别达到94.7%和58.2%,相比于基于双向长短期记忆网络和ID-CNN的命名实体识别模型均有所提升,具有更优的识别效果和更快的收敛速度。  相似文献   

11.
传统的命名实体识别方法可以凭借充足的监督数据实现较好的识别效果.而在针对电力文本的命名实体识别中,由于对专业知识的依赖,往往很难获取足够的监督数据,即存在少样本场景.同时,由于电力行业的精确性要求,相比于一般的开放领域任务,电力领域的实体类型更多,因此难度更大.针对这些挑战,本文提出了一个基于主题提示的命名实体识别方法.该方法将每个实体类型视为一个主题,并使用主题模型从训练语料中获取与类型相关的主题词.通过枚举实体跨度、实体类型、主题词以填充模板并构建提示句.使用生成式预训练语言模型对提示句排序,最终识别出实体与对应类型标签.实验结果表明,在中文电力命名实体识别数据集上,相比于几种传统命名实体方法,基于主题提示的方法取得了更好的效果.  相似文献   

12.
语言模型的建立对挖掘句子内部语义信息有着直接的影响,为了提高中文命名实体识别率,字的语义表示是关键所在。针对传统的中文命名实体识别算法没有充分挖掘到句子内部的隐藏信息问题,该文利用LSTM提取经过大规模语料预训练生成的字向量特征,同时将词向量预测矩阵传入到字向量特征提取阶段,通过矩阵运算融合为词向量特征,并进一步利用CNN提取词语之间的空间信息,将其与得到的词向量特征整合到一起输入语言模型XLnet(Generalized autoregressive pretraining for language understanding)中,然后经过BiGRU-CRF输出最优标签序列,提出了CAW-XLnet-BiGRU-CRF网络框架。并与其他的语言模型作了对比分析,实验结果表明,该框架解决了挖掘内部隐藏信息不充分问题,在《人民日报》1998年1月份数据集上的F1值达到了95.73%,能够较好地应用于中文命名实体识别任务。  相似文献   

13.
为了解决多模态命名实体识别方法中存在的图文语义缺失、多模态表征语义不明确等问题,提出了一种图文语义增强的多模态命名实体识别方法。其中,利用多种预训练模型分别提取文本特征、字符特征、区域视觉特征、图像关键字和视觉标签,以全面描述图文数据的语义信息;采用Transformer和跨模态注意力机制,挖掘图文特征间的互补语义关系,以引导特征融合,从而生成语义补全的文本表征和语义增强的多模态表征;整合边界检测、实体类别检测和命名实体识别任务,构建了多任务标签解码器,该解码器能对输入特征进行细粒度语义解码,以提高预测特征的语义准确性;使用这个解码器对文本表征和多模态表征进行联合解码,以获得全局最优的预测标签。在Twitter-2015和Twitter-2017基准数据集的大量实验结果显示,该方法在平均F1值上分别提升了1.00%和1.41%,表明该模型具有较强的命名实体识别能力。  相似文献   

14.
As an important data source in the field of bridge management, bridge inspection reports contain large-scale fine-grained data, including information on bridge members and structural defects. However, due to insufficient research on automatic information extraction in this field, valuable bridge inspection information has not been fully utilized. Particularly, for Chinese bridge inspection entities, which involve domain-specific vocabularies and have obvious nesting characteristics, most of the existing named entity recognition (NER) solutions are not suitable. To address this problem, this paper proposes a novel lexicon augmented machine reading comprehension-based NER neural model for identifying flat and nested entities from Chinese bridge inspection text. The proposed model uses the bridge inspection text and predefined question queries as input to enhance the ability of contextual feature representation and to integrate prior knowledge. Based on the character-level features encoded by the pre-trained BERT model, bigram embeddings and weighted lexicon features are further combined into a context representation. Then, the bidirectional long short-term memory neural network is used to extract sequence features before predicting the spans of named entities. The proposed model is verified by the Chinese bridge inspection named entity corpus. The experimental results show that the proposed model outperforms other mainstream NER models on the bridge inspection corpus. The proposed model not only provides a basis for automatic bridge inspection information extraction but also supports the downstream tasks such as knowledge graph construction and question answering systems.  相似文献   

15.
为了使长短时记忆网络(Long Short-Term Memory,LSTM)更精确地提取句子较远的特征信息,提出一种融合顺序遗忘编码(Fixed-size Oradinally Forgetting Encoding,FOFE)结合循环神经网络的命名实体识别算法。利用FOFE可以保留任意长度句子信息的编码方式来增强LSTM对句子特征的提取能力。利用Bi-LSTM和FOFE编码分别对向量化表示的文本进行特征提取和编码表示。结合得到的两个特征向量,通过注意力机制对Bi-LSTM的输入与输出之间的相关性进行计算,最后利用条件随机场学习标签序列的约束。该算法分别在英文和中文两种语言的数据集中进行了对比实验,F1值分别达到了91.30和91.65,验证了该方法的有效性。  相似文献   

16.
加入自注意力机制的BERT命名实体识别模型   总被引:1,自引:0,他引:1       下载免费PDF全文
命名实体识别属于自然语言处理领域词法分析中的一部分,是计算机正确理解自然语言的基础。为了加强模型对命名实体的识别效果,本文使用预训练模型BERT(bidirectional encoder representation from transformers)作为模型的嵌入层,并针对BERT微调训练对计算机性能要求较高的问题,采用了固定参数嵌入的方式对BERT进行应用,搭建了BERT-BiLSTM-CRF模型。并在该模型的基础上进行了两种改进实验。方法一,继续增加自注意力(self-attention)层,实验结果显示,自注意力层的加入对模型的识别效果提升不明显。方法二,减小BERT模型嵌入层数。实验结果显示,适度减少BERT嵌入层数能够提升模型的命名实体识别准确性,同时又节约了模型的整体训练时间。采用9层嵌入时,在MSRA中文数据集上F1值提升至94.79%,在Weibo中文数据集上F1值达到了68.82%。  相似文献   

17.
针对电力领域科技项目申请书评审工作中存在的项目与专家精准匹配难的问题,提出一种基于层次化语义表示的电力文本命名实体识别模型(Attention-RoBerta-BiLSTM-CRF, ARBC)以及基于语义-象形双特征空间映射的电力项目与电力专家的匹配策略。ARBC模型包括词嵌入模块、双向长短时记忆网络BiLSTM模块以及条件随机场(CRF)模块。其中,词嵌入模块同时使用了电力文本词语、句子和文档3个层面的信息。具体地,首先提取基于RoBerta预训练模型的词嵌入向量,进而通过引入文档层面基于词频-逆文档频率值的注意力机制增强句子的上下文表征能力,最终将词嵌入与句子嵌入进行线性加权融合,形成词语的层次化表征向量。在ARBC模型输出电力文本命名实体基础之上,进一步提出基于语义-象形双特征空间映射的项目文本与领域专家的实体匹配策略,最终实现项目与专家的有效精准匹配任务。实验结果表明,ARBC模型在2000篇电力项目摘要文本命名实体识别测试集上获得83%的F1值,显著高于基于Bert和RoBerta的文本表示方法。此外,基于双特征空间映射的实体匹配策略在电力文本与电力专家匹配任务中准确率达85%。  相似文献   

18.
临床电子病历命名实体识别(Clinical Named Entity Recognition,CNER)的主要任务是对给定的一组电子病历文档进行识别并抽取出与医学临床相关的命名实体,然后将它们归类到预先定义好的类别中,如疾病、症状、检查等实体。命名实体识别任务通常被看作一个序列标注问题。目前,深度学习方法已经被广泛应用于该任务并取得了非常好的效果。但其中大部分方法未能有效利用大量的未标注数据;并且目前使用的特征相对简单,未能深入捕捉病历文本自身的特征。针对这两个问题,文中提出一种融入语言模型和注意力机制的深度学习方法。该方法首先从未标注的临床医疗数据中训练字符向量和语言模型,然后利用标注数据来训练标注模型。具体地,将句子的向量表示送入一个双向门控循环网络(Bidirectional Gated Recurrent Units,BiGRU)和预训练好的语言模型,并将两部分的输出进行拼接。之后,将前一层的拼接向量输入另一个BiGRU和多头注意力(Multi-head Attention)模块。最后,将BiGRU和多头注意力模块的输出进行拼接并输入条件随机场(Conditional Randoin Field,CRF),预测全局最优的标签序列。通过利用语言模型特征和多头注意力机制,该方法在CCKS-2017 Shared Task2标准数据集上取得了良好的结果(F1值为91.34%)。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号