首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
The development and integration of available current methods and the development of new methods for an adaptive finite element analysis of metal forming processes are presented. The analysis includes large-strain, elastic–plastic, and thermal effects. Many numerical methods such as mesh generation, simulation of the contact between the workpiece and tool and die, and optimization of the finite element mesh are integrated and incorporated. In addition, an algorithm is developed which can detect certain severely distorted elements where the area of integration is approaching zero. The advantage of correcting these regions of locally distorted elements is demonstrated. These numerical methods are implemented in a finite element program developed for simulating metal forming processes, with the emphasis on automating the analysis. Examples include an axisymmetric stress simulation of a coldheading process, a plane strain simulation of an extrusion process and a plane strain simulation of orthogonal metal cutting, all with noticeable thermal effects. The orthogonal cutting forces and feed forces calculated are compared with two sets of experimental data, with good agreement.  相似文献   

2.
An experimental procedure and a finite element simulation method for rate-dependent metal forming processes are developed. The development includes the formulation of a tangential stiffness matrix for an axisymmetric solid finite element with four node, eight degree of freedom, quadrilateral cross-section. The formulation includes the effects of elasticity, viscoplasticity, temperature, strain rate and large strains. The solution procedure is based on a Newton-Raphson incremental-iterative method which solves the non-linear equilibrium equations and gives temperatures and incremental stresses and strains. Three examples are studied. In example 1, finite element simulation for the upsetting of a cylindrical workpiece between two perfectly rough dies is performed and the results are compared with alternative finite element solutions. In examples 2 and 3, both experimental and finite element studies are performed for the upsetting of a cylindrical billet and the forging of a ball, respectively. Annealed aluminium 1100 workpieces are used in both examples. For the finite element analysis, uniaxial compression tests are first performed to provide the material properties. The tests generate elastic moduli and two sets of stress-strain curves (quasi-static and constant strain rate), which are used to establish a rate-dependent material model for input. For both examples 2 and 3, comparisons between the experimental and finite element simulation results for the forming force vs. die displacement relations and also for the deformed configurations show good agreement. The versatility of finite element methods allows for displaying detailed knowledge of the metal forming process, such as the distributions of temperature rise, yield stress, effective stress, plastic strain, plastic strain rate, forming forces and deformed configurations, etc. at any instance during the forming process.  相似文献   

3.
4.
Residual stresses are created in type 316H stainless steel fracture mechanics specimens using the process of local out‐of‐plane compression (LOPC). Three sets of LOPC tools are used to create different distributions of residual stress near to the crack tip. Also the tools create different levels of prior plastic strain. Residual stresses are measured using the neutron diffraction method and compared with the stress predictions obtained from finite element (FE) simulations of LOPC. The specimens are then subjected to thermal exposure at 550 °C for several thousand hours. A creep deformation and damage model is introduced into the FE analysis to predict the relaxation of stresses and creation of damage in the specimens. Neutron diffraction experiments are undertaken to measure the relaxed residual stresses and fractographic analysis of thermally exposed samples measured the extent of creep damage. A comparison between measured and simulated results demonstrates that the prior plastic strain has a significant effect on damage accumulation but this is not accounted for in the current creep damage models.  相似文献   

5.
In the multi-layer welded joint of titanium-tantalum (Ti-5Ta/Ti-5Ta/Ta/substrate of stainless steel (SUS304) the second layer of plate Ti-5Ta is 4mm thick, and the third plate Ta is only 1 mm thick. It is almost impossible to measure the stresses near the weld with cutting strip technique. Using a successive milling technique the inplane elastic strain releases normal to the thickness direction are measured. With the finite element method (FEM) inherent strain distribution along thickness z-direction is evaluated according to the elastic strain releases. Subsequently, assuming that the inherent strains (plastic strains resulting from the welding process) are the initial strains of the FEM analysis for the welded residual stresses, these are used further to evaluate the residual stress distributions along the thickness z-direction in the multi-layer explosive welding joint.  相似文献   

6.
Ball-burnishing induces compressive residual stresses on treated materials by the effect of plastic deformation. The result is an increase in the fatigue life of the treated part, retarding the initiation of cracks on the surface. Compressive residual stresses have been previously measured by X-ray diffraction near the surface, revealing considerably high values at the maximum analyzed depth, in relation to other finishing processes such as shot peening. However, the maximum analyzed depth is very limited by using this technique. In this paper, the incremental hole drilling (IHD) technique is tested to measure residual stresses, being able to reach a 2-mm measuring depth. To that objective, a commercial strain gage is used and calibrated using finite element model simulations. A second Finite Element Model based on material removal rate is developed to obtain the equations to calculate the strain release through IHD. Finally, residual stresses are measured experimentally with that technique on two different materials, confirming that ball-burnishing increases the compressive residual stresses in layers up to 0.5?mm deep for the testing conditions, which is a good response to industrial needs. The method proves to be suitable, simple and inexpensive way to measure the value of these tensions.  相似文献   

7.
In this paper,the effect of four sequential cuts in side milling of Ti6Al4 V on chip formation and residual stresses(RS) are investigated using finite element method(FEM).While the open literature is limited mainly to the studies of orthogonal sequential cutting with the constant uncut chip thickness greater than 0.01 mm,it is suggested herein to investigate not only the variable uncut chip thickness which characterises the down milling process,but also the uncut chip thickness in the sub-micron range using a finite cutting edge radius.For the resulting ductile machining regime,the characteristics of the chip morphology,the force profiles,the plastic deformation and temperature distributions have been analyzed.Furthermore,this study revealed that the RS should be extracted toward the area where the insert exits the workpiece in the FE simulation of the down-milling process.The simulation of a number of sequential cuts due to the consecutive engagements of the insert is required in order to capture the gradual accumulation of the RS before reaching an asymptotic convergence of the RS profile.The predicted RS are in reasonable agreement with the experimental results.  相似文献   

8.
Welding is a reliable and efficient joining process in which the coalescence of metals is achieved by fusion. Localized heating during welding, followed by rapid cooling, can generate residual stresses in the weld and in the base metal. Estimating the magnitude and distribution of welding residual stresses is important. This study applies thermal elasto-plastic analysis, using finite element techniques, to analyze the thermomechanical behavior and evaluate the residual stresses in butt-welded joints. The residual stresses at the surface of the weldments were measured by X-ray diffraction. The results of finite element analysis were compared with experimental residual stress data to confirm the accuracy of the method. The aim is to present data that may confirm the validity of currently employed fabrication processes in welded structures and even improve them.  相似文献   

9.
The residual compressive stresses induced by the autofrettage process in a metal vessel are limited by metal plasticity. Here we showed that the autofrettage of layered metal–ceramic composite vessels leads to considerably higher residual compressive stresses compared to the counterpart metal vessel. To calculate the residual stresses in a composite vessel, an extension of the Variable Material Properties (X-VMP) method for materials with varying elastic and plastic properties was employed. We also investigated the autofrettage of composite vessels made of functionally graded material (FGM). The significant advantage of this configuration is in avoiding the negative effects of abrupt changes in material properties in a layered vessel – and thus, inherently, in the stress and strain distributions induced by the autofrettage process. A parametric study was carried out to obtain near-optimized distribution of ceramic particles through the vessel thickness that results in maximum residual stresses in an autofrettaged functionally graded composite vessel. Selected finite element results were also presented to establish the validity of the X-VMP method.  相似文献   

10.
The residual stresses due to fillet rolling and the bending stresses near the fillets of crankshaft sections under bending fatigue tests are important driving forces to determine the bending fatigue limits of crankshafts. In this paper, the residual stresses and the bending stresses near the fillet of a crankshaft section under fillet rolling and subsequent bending fatigue tests are investigated by a two-dimensional plane strain finite element analysis based on the anisotropic hardening rule of Choi and Pan [Choi KS, Pan J. A generalized anisotropic hardening rule based on the Mroz multi-yield-surface model for pressure insensitive and sensitive materials (in preparation)]. The evolution equation for the active yield surface during the unloading/reloading process is first presented based on the anisotropic hardening rule of Choi and Pan (in preparation) and the Mises yield function. The tangent modulus procedure of Peirce et al. [Peirce D, Shih CF, Needleman A. A tangent modulus method for rate dependent solids. Comput Struct 1984;18:875–87] for rate-sensitive materials is adopted to derive the constitutive relation. A user material subroutine based on the anisotropic hardening rule and the constitutive relation was written and implemented into ABAQUS. Computations were first conducted for a simple plane strain finite element model under uniaxial monotonic and cyclic loading conditions based on the anisotropic hardening rule, the isotropic and nonlinear kinematic hardening rules of ABAQUS. The results indicate that the plastic response of the material follows the intended input stress–strain data for the anisotropic hardening rule whereas the plastic response depends upon the input strain ranges of the stress–strain data for the nonlinear kinematic hardening rule. Then, a two-dimensional plane-strain finite element analysis of a crankshaft section under fillet rolling and subsequent bending was conducted based on the anisotropic hardening rule of Choi and Pan (in preparation) and the nonlinear kinematic hardening rule of ABAQUS. In general, the trends of the stress distributions based on the two hardening rules are quite similar after the release of roller and under bending. However, the compressive hoop stress based on the anisotropic hardening rule is larger than that based on the nonlinear kinematic hardening rule within the depth of 2 mm from the fillet surface under bending with consideration of the residual stresses of fillet rolling. The critical locations for fatigue crack initiation according to the stress distributions based on the anisotropic hardening rule appear to agree with the experimental observations in bending fatigue tests of crankshaft sections.  相似文献   

11.
Abstract

A method by which measured values of residual stresses in a component of complex shape may be corrected using the finite element is presented. The surface of the component is removed layer by layer and the residual stresses after removal of each layer are measured using X-ray diffraction; the correction factors are calculated using the finite element method, thereby obtaining the distribution of internal stresses in the complex component. In addition, methods of verifying the final values of the internal stresses are suggested. As examples, the distributions of the residual stresses, within several cross-sections of two types of heat treated shaft are calculated using the above method. Finally, the reliability of the results is discussed.

MST/16  相似文献   

12.
During the production of torsion bars, two different mechanical processes of inducing the residual stresses into the torsion bar are used: the presetting of the torsion bar and the deep rolling of the torsion bar. The process of presetting the torsion bar is carried out by twisting the torsion bar to the desired angle and releasing it to the new residual angle position. With controlled overstraining, favorable residual shear stresses are induced into the torsion bar, so the material is strain hardened and the yield point of the material is shifted and increased in the stress and strain space. The objective of the deep rolling process is to introduce compressive residual stresses into near-surface regions in order to increase the fatigue strength of the torsion bar. These two processes influence each other. The final level of residual stresses depends on the production sequence of these two processes and the production parameters of each process. The correct production sequence of these two operations and distribution of beneficial residual stress was simulated using the finite element (FE) method. To validate this model, the predicted surface residual stresses were compared by the X-ray diffraction (XRD) measurements of residual stresses.  相似文献   

13.
Analysis of deformation induced residual macro-and microstresses by mechanical and X-ray methods Residual stress distributions in plastically deformed tensile and bending specimens of perlitic steel were analysed using X-ray diffraction technique and incremental holedrilling method. After tensile loading compressive residual stresses are measured by X-ray analysis in the ferrite phase. Consequently X-ray analysis detects compressive microstresses. In the case of bending specimens residual macrostresses are superposed with residual microstresses after unloading. In no case identical residual stress values were measured by X-ray and hole drilling methods. Microstresses can be separated combining both measurement methods. Microstresses after tensile loading were found to be greater than in surface layers of respective bending samples subjected to the same amount of plastic strain.  相似文献   

14.
Peening processes can be used as a fatigue enhancement treatment for metallic structures by locally introducing compressive residual stresses. A combined experimental–numerical study on a single-impact process with a drop tower on the aluminium alloy AA5754, representing the elementary process of mechanical peening, has been performed to investigate different impact parameters on the residual stress profile. Residual stresses have been measured using high-energy X-Ray diffraction. A three-dimensional finite element model is used to predict the residual stresses numerically. The elastic strain components from the numerical results are used to calculate residual stresses by assuming either a plane stress or a plane strain state for different specimen thickness to assess the validity of respective assumption. The validity of the numerical simulation is evaluated based on comparisons of the elastic strain profiles and the percentage loss in kinetic energy of the steel ball due to the impact for four different energies, showing overall a good agreement in the experimental–numerical comparisons.  相似文献   

15.
Determination of Deformation-induced Residual Stresses in Full Forward Extrusion and Comparison to Experimental Results The macroscopic residual stresses induced by cold forward extrusion of rods are calculated by the finite element method. For an experimental determination of the residual stresses X-ray diffraction and neutron diffraction as well as the hole drilling method are applied. The results of the experiments and the calculations are in qualitative agreement, those of the experiments even are in good quantitative agreement. They allow the investigation of the influence of the processing parameters. Thus, a product optimisation with respect to residual stresses is enabled.  相似文献   

16.
In this paper finite element methods were used to determine the influence of various coated and uncoated tungsten carbide cutting tools on the machining of a nickel-based super alloy Inconel 718. Disposable coated and uncoated carbide inserts were used both experimentally and as FEA models to study how the stress distribution within different coatings and carbide grades compared to each other, under a range of cutting conditions. Simulation of an orthogonal metal cutting process was performed using FORGE2, an elasto-visco plastic FEA code. All FE models were assumed to be plane strain. The results include the stress and temperature distributions through the primary shear zone, the chip/tool contact region and the coating/substrate boundaries. The tool wear and stress results from the FE modelling agree favourably with those obtained from experimental work.  相似文献   

17.
On the basis of the thermal-elastic-plastic theory, a three-dimensional finite element numerical simulation is performed on the girth welded residual stresses of the duplex stainless steel pipe with ANSYS nonlinear finite element program for the first time. Three-dimensional FEM using mobile heat source for analysis transient temperature field and welding stress field in circumferential joint of pipes is founded. Distributions of axial and hoop residual stresses of the joint are investigated. The axial and the hoop residual stresses at the weld and weld vicinity on inner surface of pipes are tensile, and they are gradually transferred into compressive with the increase of the departure from the weld. The axial residual stresses at the weld and weld vicinity on outer surface of pipes is compressive while the hoop one is tensile. The distributions of residual stresses compared positive-circle with negative-circle show distinct symmetry. These results provide theoretical knowledge for the optimization of p  相似文献   

18.
Abstract

There is little experimental knowledge about the initial state of through thickness residual stresses in rolls and sleeves for the steel rolling industry. This is surprising bearing in mind the impact that residual stress has on the performance of the roll and sleeve materials in the highly aggressive loading environments of the metal working industry. Previous work has been confined to measurement of very near surface residual stresses and numerical predictions of residual stress distributions. In the present paper through thickness residual stress measurements were carried out using a deep hole drilling technique on a series of rolls and sleeves representative of those used in the rolling industry. Different features of the manufacturing processes used in their production are shown to influence the magnitude and distribution of the residual stresses. It is also shown that the measurements can be used, together with a finite element analysis, to determine the volumetric distribution of the residual stresses.  相似文献   

19.
This work deals with the fatigue behaviour of S355NL steel welded joints classically used in naval structures. The approach suggested here, in order to estimate the fatigue crack initiation life, can be split into two stages. First, stabilized stress–strain cycles are obtained in all points of the welded joint by a finite element analysis, taking constant or variable amplitude loadings into account. This calculation takes account of: base metal elastic–plastic behaviour, variable yield stress based on hardness measurements in various zones of the weld, local geometry at the weld toe and residual stresses if any. Second, if a fast elastic shakedown occurs, a two-scale damage model based on Lemaitre et al. 's work is used as a post-processor in order to estimate the fatigue crack initiation life. Material parameters for this model were identified from two Wöhler curves established for base metal. As a validation, four-point bending fatigue tests were carried out on welded specimens supplied by 'DCNS company'. Two load ratios were considered: 0.1 and 0.3. Residual stress measurements by X-ray diffraction completed this analysis. Comparisons between experimental and calculated fatigue lives are promising for the considered loadings. An exploitation of this method is planned for another welding process.  相似文献   

20.
A new micromechanical model is provided to account for the full interaction between rubber particles in toughened polymers. Three-dimensional large deformation elastic–plastic finite element analysis is carried out to obtain the local stress and strain fields and then a homogenization method is adopted to obtain the effective stress–strain relation. The dependence of the local stress and strain distributions and effective stress–strain relation on phase morphology and mechanical properties of rubber particles is examined under various transverse constraints. The profile for the effective yield surface is obtained at four different particle volume fractions. It is shown that stress triaxiality affects significantly the effective yield stress and the local stress concentrations. Rubber cavitation and matrix shear yielding are two coupled toughening mechanisms; which one occurs first depends on the properties of rubber particles and matrix and the imposed triaxiality. Rubber cavitation plays an important role in the toughening process under high tensile triaxial stresses. Axisymmetric modelling may underestimate, and two-dimensional plane-strain modelling may overestimate, the inter-particle interaction compared with three-dimensional modelling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号