首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This is the second part of a two-part paper on plate bending elements with shear effects included. This paper presents a new four-node, 12-d.o.f. quadrilateral plate bending element valid for the analysis of thick to thin plates. The element called DKMQ, has a proper rank (contains no spurious zero-energy modes), passes the patch test for thin and thick plates in an arbitrary mesh and is free of shear locking. Very good results have been obtained for thin and thick plates by the element. An extended DKT element for thick-plate bending analysis is evaluated in Part I.19  相似文献   

2.
A new nine DOF triangular element for analysis of thick and thin plates   总被引:1,自引:0,他引:1  
A simple triangular 9 DOF plate bending element for analysis of thick and thin plate is presented in this paper. This element is constructed by the following procedure: (i) the variation functions of the rotation and shear strain along each side of the element are determined using Timoshenko's beam theory; and (ii) the rotation, curvature and shear strain fields in the domain of the element are then determined using the technique of improved interpolation. The proposed element, denoted by ARS-T9, is robust and free of shear locking and, thus, it can be employed to analyze very thin plate. Numerical examples show that the proposed element is a high performance element for thick and thin plates. Received 24 May 1999  相似文献   

3.
Based on the assumed element strain fields and the interrelated displacement-rotation interpolations, a four-node (12 dof) quadrilateral C0 finite element, designated as QCCP-2, for the analysis of thick/thin plates is developed in this paper. The four-node C0 plate element presented here possesses a linear bending strain field, and the element stiffness matrices are given explicitly. Therefore, the present four-node C0 plate element is more efficient and accurate than the existing four-node C0 plate elements where the constant strain stiffness matrices are obtained by numerical integration. By the use of the interrelated displacement-rotation interpolations, QCCP-2 is capable of automatically satisfying the Kirchhoff assumption for the case of thin plates. Consequently, QCCP-2 is not only free of shear locking, but also free from the numerical ill-conditioning. Furthermore, QCCP-2 passes the patch test of thin plates. The four-node quadrilateral C0 elements presented here can automatically reduce to the corresponding three-node triangular elements. Several numerical examples are given to demonstrate the efficiency and accuracy of the C0 plate bending element QCCP-2.  相似文献   

4.
This paper describes a methodology for extending rotation‐free plate and beam elements to accounting for transverse shear deformation effects. The ingredients for the element formulation are a Hu–Washizu‐type mixed functional, a linear interpolation for the deflection and the shear angles over standard finite elements and a finite volume approach for computing the bending moments and the curvatures over a patch of elements. As a first application of the general procedure, we present an extension of the three‐noded rotation‐free basic plate triangle (BPT) originally developed for thin plate analysis to account for shear deformation effects of relevance for thick plates and composite‐laminated plates. The nodal deflection degrees of freedom (DOFs) of the original BPT element are enhanced with the two shear deformation angles. This allows to compute the bending and shear deformation energies leading to a simple triangular plate element with three DOFs per node (termed BPT+ element). For the thin plate case, the shear angles vanish and the element reproduces the good behaviour of the original thin BPT element. As a consequence the element is applicable to thick and thin plate situations without exhibiting shear locking effects. The numerical solution for the thick case can be found iteratively starting from the deflection values for the Kirchhoff theory using the original thin BPT element. A two‐noded rotation‐free beam element termed CCB+ applicable to slender and thick beams is derived as a particular case of the plate formulation. The examples presented show the robustness and accuracy of the BPT+ and the CCB+ elements for thick and thin plate and beam problems. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

5.
This paper deals with the formulation and the evaluation of a new three node, nine d.o.f. triangular plate bending element valid for the analysis of thick to thin plates. The formulation is based on a generalization of the discrete Kirchhoff technique to include the transverse shear effects. The element, called DST (Discrete Shear Triangle), has a proper rank and is free of shear locking. It coincides with the DKT (Discrete Kirchhoff Triangle) element if the transverse shear effects are not significant. However, an incompatibility of the rotation of the normal appears due to shear effects. A detailed numerical evaluation of the characteristics and of the behaviour of the element has been performed including patch tests for thin and thick plates, convergence tests for clamped and simply supported plates under uniform loading and evaluation of stress resultants. The overall performance of the DST element is found to be very satisfactory.  相似文献   

6.
A plate formulation, for the inclusion of warping and transverse shear deformations, is considered. From a complete thick and thin plate formulation, which was derived without ad hoc assumptions from the three-dimensional equations of elasticity for isotropic materials, the bending solution, involving powers of the thickness co-ordinate z, is used for constructing a quadrilateral finite plate bending element. The constructed element trial functions, for the displacements and stresses, satisfy, a priori, the three-dimensional Navier equations and equilibrium equations, respectively. For the coupling of the elements, independently assumed functions on the boundary are used. High accuracy for both displacements and stresses (including transverse shear stresses) can be achieved with rather coarse meshes for thick and thin plates.  相似文献   

7.
A high precision triangular thick orthotropic plate bending element on an elastic foundation is developed for the free vibration analysis of thick plates on elastic foundation. The element has three nodes with twelve degrees-of-freedom per node, and takes into account the shear deformation and rotatory inertia. The accuracy of the element is established by comparison of the natural frequencies of certain thick and thin plates, determined from a consistent mass matrix formulation, with available results.  相似文献   

8.
ABSTRACT

In this work, the formulation of a new triangular finite element is presented for static and free vibration of plate bending. The developed element which contains the three essential external degrees of freedom at each of the three corner nodes is based on the Reissner/Mindlin theory and the strain-based approach. This element is based on the linear variation of the three bending strains and constant transverse shear strains. The present element performances are evaluated through several tests related to moderated thick and thin plates with various shapes where it is found to be numerically more efficient than the bilinear element.  相似文献   

9.
A refined discrete degenerated 15‐DOF triangular shell element RDTS15 with high performances is proposed. For constructing the element displacement function, the exact displacement function of the Timoshenko's beam is used as the displacement on the element boundary, and the re‐constitute method for shear strain matrix is adopted. The proposed element can be used in the analysis of both moderate thick and thin plates/shells. Numerical examples presented show that the new model indeed possesses higher accuracy in the analysis of thin and thick plates/shells, and that it can pass the patch test required for the Kirchhoff thin plate elements, and also passed the inf–sup test for free cylindrical shell problems and satisfied both the bending‐ and membrane‐dominated test. Copyright © 2004 John Wiley Sons, Ltd.  相似文献   

10.
This paper presents a new C0 eight-node quadrilateral finite element (FE) for geometrically linear elastic plates. This finite element aims at modeling both thin and thick plates without any pathologies of the classical plate finite elements (shear and Poisson or thickness locking, spurious modes, etc). A C1 FE was previously developed by the first author based on the kinematics proposed by Touratier. This new FE can be viewed as an evolution towards three directions: (1) use of only C0 FE approximations; (2) modeling of thick to thin structures; and (3) capability in multifield problems. The transverse normal stress is included allowing use of the three-dimensional constitutive law. The element performances are evaluated on some standard plate tests, and comparisons are given with exact three-dimensional solutions for plates under mechanical and thermal loads. Comparisons are made with other plate models using C1 and semi-C1 FE approximations as well as with an eight node C0 FE based on the Reissner–Mindlin model. All results indicate that the present element is highly insensitive to mesh distortion, has very fast convergence properties and gives accurate results for displacements and stresses. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

11.
A mixed triangular finite element model has been developed for plate bending problems in which effects of shear deformation are included. Linear distribution for all variables is assumed and the matrix equation is obtained through Reissner's variational principle. In this model, interelement compatibility is completely satisfied whereas the governing equations within the element are satisfied ‘in the mean’. A detailed error analysis is made and convergence of the scheme is proved. Numerical examples of thin and moderately thick plates are presented.  相似文献   

12.
 Based on the mechanism of shear locking phenomenon and potential functional of Reissner plate bending problem, the generalized mixed variational principle for Reissner plate analysis is presented by parameterized Lagrange multiplier method. The proposed variational functional contains splitting factors which are able to adjust the shear potential energy and shear complementary energy components in it. The generalized mixed finite element formulation of bilinear quardrilateral element for Reissner plate bending analysis is established in terms of the new variational principle. The stiffness of the finite element model can be changed by the alteration of the splitting factors. Thus both the free of shear locking and higher accuracy are obtained by the choice of appropriate splitting factors. The most important is that this paper gives one self-adaptative way to choose the splitting factors for thin and moderately thick plates. This results in the comparative order of magnitude between the bending stiffness and shear stiffness for the arbitrary thickness. In the application of two-by-two exact Gaussian integration scheme to the proposed mixed element model, numerical examples show that free of locking is obtained even in the thin plate limit and high accuracy is given for moderately thick plate. Received: 15 January 2002 / Accepted: 10 September 2002 This work is partially supported by the National Nature Science Fund in China under Award No. 53978376  相似文献   

13.
In this paper flat shell elements are formed by the assemblage of discrete Mindlin plate elements RDKTM and either the constant strain membrane element CST or the Allmans membrane element with drilling degrees of freedom LST. The element RDKTM is a robust Mindlin plate element, which can perform uniformly thick and thin plate bending analysis. It also passes the patch test for thin plate bending, and its convergence for very thin plates can be ensured theoretically. The singularity of the stiffness matrix and membrane locking are studied for the present elements. Numerical examples are presented to show that the present models indeed possess properties of simple formulations, high accuracy for thin and thick shells, and it is free from shear locking for thin plate/shell analysis.  相似文献   

14.
A refined discrete degenerated 20‐DOF quadrilateral shell element RQS20 is proposed. The exact displacement function of the Timoshenko's beam is used as the displacement on the element boundary. The re‐constitute method for shear strain matrix is adopted. The proposed element can be used for the analysis of both moderately thick and thin plates/shells, and the convergence for the very thin case can be ensured theoretically. Numerical examples presented show that the new model indeed possesses higher accuracy in the analysis of thin and thick plates/shells, and that it can pass the patch test required for the Kirchhoff thin plate elements. Most important of all, it is free from the membrane and shear locking phenomena for extremely thin plates/shells, on the one hand, and it can also avoid the phenomenon of oscillatory solutions for thick plates/shells case on the other. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

15.
A method is described for including the effect of shear deformations in existing thin plate finite elements, and thereby extending their range of application to include moderately thick plates. The method does not add extra degrees of freedom to the final element, so the thick and thin plate elements can be used interchangeably, and the thick plate solution is not appreciably more expensive than the thin plate solution. It is assumed that the shear deformations are constant over the element and, to account for this, two extra internal shear strain variables are added to the element. Various methods for eliminating these internal variables are examined but it is shown to be impossible to simultaneously satisfy both the constant bending moment and constant shear patch tests, except for parallelograms. However, one method gives elements which pass the constant shear patch test and, although failing the constant bending moment patch test for arbitrary geometries, gives errors which are small enough to be neglected in most engineering applications. This method has been applied to a triangular plate element and it is shown that the results obtained with this element converge (for all practical purposes) to the correct thick plate results.  相似文献   

16.
In this paper the formulation of a new triangular element based on the Reissner/Mindlin plate theory is presented. The element has three nodes and three d.o.f. per node only. It is based on constant bending modes plus incompatible energy orthogonal higher order bending modes. The transverse shear effects are represented using the moment equilibrium and the constitutive equations. Discrete (collocation) shear constraints are considered on each side to relate the kinematical and the independent shear strains. The element has a proper rank, is completely locking free, passes all constant patch-tests exactly. The detailed numerical evaluation shows that the element, called DST-BK, is a robust and high-performance element for thick and thin plates.  相似文献   

17.
本文利用通过“单体检验”并以“自由公式”为基础考虑剪切变形的任意四边形板弯曲单元体对薄板和中厚板的屈曲问题进行了分析和研究。文中计算了单向和双向受压下方板的稳定参数及径向受压下圆板的稳定参数,并初步考察了一致几何刚度和非一致几何刚度的差异。给出的数值结果是令人满意的。此外,对中厚板屈曲问题的进一步研究,也是很有意义的。  相似文献   

18.
In this paper a generalized finite element model is developed for static and dynamic analyses of laminated composite plates using zeroth-order shear deformation theory (ZSDT). The theory ensures the parabolic distribution of transverse shear stresses across the plate thickness. A four-noded plate element is considered in this model and the generalized nodal variables are expressed using Lagrangian linear interpolation functions and Hermitian cubic interpolation functions. The solutions of the finite element model have been compared with the existing solutions for symmetric and antisymmetric laminated composite plates. The comparison confirms that the ZSDT can be efficiently used for finite element analysis of both thin and thick plates with high accuracy.  相似文献   

19.
A new quadrilateral Reissner–Mindlin plate element with 12 element degrees of freedom is presented. For linear isotropic elasticity a Hellinger–Reissner functional with independent displacements, rotations and stress resultants is used. Within the mixed formulation the stress resultants are interpolated using five parameters for the bending moments and four parameters for the shear forces. The hybrid element stiffness matrix resulting from the stationary condition can be integrated analytically. This leads to a part obtained by one‐point integration and a stabilization matrix. The element possesses a correct rank, does not show shear locking and is applicable for the evaluation of displacements and stress resultants within the whole range of thin and thick plates. The bending patch test is fulfilled and the computed numerical examples show that the convergence behaviour is better than comparable quadrilateral assumed strain elements. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

20.
Several simple and accurate C° two-node arch/beam and four-node cylindrical shell/plate finite elements are presented in this paper. The formulation used here is based on the refined theory of thick cylindrical shells and the quasi-conforming element technique. Unlike most C° elements, the element stiffness matrix presented here is given explicitly. In spite of their simplicity, these C° finite elements posseses linear bending strains and are free from the deficiencies existing in curved C° elements such as shear and membrane locking, spurious kinematic modes and numerical ill-conditioning. These finite elements are valid not only for thick/thin beams and plates, but also for arches/straight beams and cylindrical shells/plates. Furthermore, these C° elements can automatically reduce to the corresponding C1 beam and plate elements and give the C° beam element obtained by the reduced integration as a special case. Several numerical examples indicate that the simple two-node arch/beam and four-node cylindrical shell/plate elements given in this paper are superior to the existing C° elements with the same element degrees of freedom. Only the formulation of the rectangular cylindrical shell and plate element is presented in this paper. The formulation of an arbitrarily quadrilateral plate element will be presented in a follow-up paper32.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号