首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
针对有障碍物环境下非完整轮式 移动机器人的轨迹跟踪问题,提出一种基于速度空间的同时避障和轨迹跟踪方法(VSTTM).首先,根据机器人 的动力学特性构建速度空间,得到由速度元组构成的控制集;然后,构造目标函数并对各控制量进行 评价,其中跟踪误差评价函数评估跟踪效果,碰撞检测函数检测是否发生碰撞,终端状态惩罚项保证 算法的稳定性;最后,通过优化过程找到最优的无碰控制量.仿真结果表明了所提出方法的有效性.  相似文献   

2.
Dynamically-Stable Motion Planning for Humanoid Robots   总被引:9,自引:0,他引:9  
We present an approach to path planning for humanoid robots that computes dynamically-stable, collision-free trajectories from full-body posture goals. Given a geometric model of the environment and a statically-stable desired posture, we search the configuration space of the robot for a collision-free path that simultaneously satisfies dynamic balance constraints. We adapt existing randomized path planning techniques by imposing balance constraints on incremental search motions in order to maintain the overall dynamic stability of the final path. A dynamics filtering function that constrains the ZMP (zero moment point) trajectory is used as a post-processing step to transform statically-stable, collision-free paths into dynamically-stable, collision-free trajectories for the entire body. Although we have focused our experiments on biped robots with a humanoid shape, the method generally applies to any robot subject to balance constraints (legged or not). The algorithm is presented along with computed examples using both simulated and real humanoid robots.  相似文献   

3.
In this article, a fast approach for robust trajectory planning, in the task space, of redundant robot manipulators is presented. The approach is based on combining an original method for obstacle avoidance by the manipulator configuration with the traditional potential field approach for the motion planning of the end-effector. This novel method is based on formulating an inverse kinematics problem under an inexact context. This procedure permits dealing with the avoidance of obstacles with an appropriate and easy to compute null space vector; whereas the avoidance of singularities is attained by the proper pseudoinverse perturbation. Furthermore, it is also shown that this formulation allows one to deal effectively with the local minimum problem frequently associated with the potential field approaches. The computation of the inverse kinematics problem is accomplished by numerically solving a linear system, which includes the vector for obstacle avoidance and a scheme for the proper pseudoinverse perturbation to deal with the singularities and/or the potential function local minima. These properties make the proposed approach suitable for redundant robots operating in real time in a sensor-based environment. The developed algorithm is tested on the simulation of a planar redundant manipulator. From the results obtained it is observed that the proposed approach compares favorably with the other approaches that have recently been proposed. © 1995 John Wiley & Sons, Inc.  相似文献   

4.
Interactive robot doing collaborative work in hybrid work cell need adaptive trajectory planning strategy. Indeed, systems must be able to generate their own trajectories without colliding with dynamic obstacles like humans and assembly components moving inside the robot workspace. The aim of this paper is to improve collision-free motion planning in dynamic environment in order to insure human safety during collaborative tasks such as sharing production activities between human and robot. Our system proposes a trajectory generating method for an industrial manipulator in a shared workspace. A neural network using a supervised learning is applied to create the waypoints required for dynamic obstacles avoidance. These points are linked with a quintic polynomial function for smooth motion which is optimized using least-square to compute an optimal trajectory. Moreover, the evaluation of human motion forms has been taken into consideration in the proposed strategy. According to the results, the proposed approach is an effective solution for trajectories generation in a dynamic environment like a hybrid workspace.  相似文献   

5.
The article presents a new and simple solution to the obstacle avoidance problem for redundant robots. In the proposed approach, called configuration control, the redundancy is utilized to configure the robot so as to satisfy a set of kinematic inequality constraints representing obstacle avoidance, while the end-effector is tracking a desired trajectory. The robot control scheme is very simple, and uses on-line adaptation to eliminate the need for the complex dynamic model and parameter values of the robot. Several simulation results for a four-link planar robot are presented to illustrate the versatility of the approach. These include reaching around a stationary obstacle, simultaneous avoidance of two obstacles, robot reconfiguration to avoid a moving obstacle, and avoidance of rectangular obstacles. The simplicity and computational efficiency of the proposed scheme allows on-line implementation with a high sampling rate for real-time obstacle avoidance in a dynamically varying environment.  相似文献   

6.
A real-time planning algorithm for obstacle avoidance of redundant robots   总被引:3,自引:0,他引:3  
A computationally efficient, obstacle avoidance algorithm for redundant robots is presented in this paper. This algorithm incorporates the neural networks and pseudodistance function D p in the framework of resolved motion rate control. Thus, it is well suited for real-time implementation. Robot arm kinematic control is carried out by the Hopfield network. The connection weights of the network can be determined from the current value of Jacobian matrix at each sampling time, and joint velocity commands can be generated from the outputs of the network. The obstacle avoidance task is achieved by formulating the performance criterion as D p>d min (d min represents the minimal distance between the redundant robot and obstacles). Its calculation is only related to some vertices which are used to model the robot and obstacles, and the computational times are nearly linear in the total number of vertices. Several simulation cases for a four-link planar manipulator are given to prove that the proposed collision-free trajectory planning scheme is efficient and practical.  相似文献   

7.
The presence of cooperation between robots and machines in the industrial environment improved the solution for several manufacturing problems. With cooperation, new challenges emerged, and among these stands out the collision avoidance between such robots and machines. Collision avoidance can be dealt with in several ways, taking into account the computational effort to make a decision and the quality of the calculated trajectory for the robots, evaluated, for instance, by smooth profiles avoiding sudden variations in joints’ velocities or acceleration. In these circumstances, the involved robots need to be redundant since new movements are necessary for avoiding collisions. The strategies for collision avoidance are offline (i.e., based on pre-programming the task), or online (i.e., implemented while the robot performs the main task). In online collision avoidance strategies, numerical performance must ensure the time requirements of the main task performed by the robot; so, numerically efficient solutions are the most appropriate. This paper presents a proposal for the collision avoidance treatment from fixed obstacles for redundant robots, based on polynomial functions. The proposed solution allows achieving smooth trajectories according to criteria based on the continuity of derivatives in trajectory curve transitions. When the robot is out of the imminent collision, it is proposed to solve the inverse kinematics through the Adaptive Extended Jacobians. Throughout the text, the mathematical developments based on polynomials are presented, and in the end, a case study graphically shows comparative results.  相似文献   

8.
Dual-arm reconfigurable robot is a new type of robot. It can adapt to different tasks by changing its different end-effector modules which have standard connectors. Especially, in fast and flexible assembly, it is very important to research the collision-free planning of dual-arm reconfigurable robots. It is to find a continuous, collision-free path in an environment containing obstacles. A new approach to the real-time collision-free motion planning of dual-arm reconfigurable robots is used in the paper. This method is based on configuration space (C-Space). The method of configuration space and the concepts reachable manifold and contact manifold are successfully applied to the collision-free motion planning of dual-arm robot. The complexity of dual-arm robots’ collision-free planning will reduce to a search in a dispersed C-Space. With this algorithm, a real-time optimum path is found. And when the start point and the end point of the dual-arm robot are specified, the algorithm will successfully get the collision-free path real time. A verification of this algorithm is made in the dual-arm horizontal articulated robot SCARATES, and the simulation and experiment ascertain that the algorithm is feasible and effective.  相似文献   

9.
《Advanced Robotics》2013,27(8):673-699
This paper deals with motion planning on rough terrain for mobile robots. The aim is to develop efficient algorithms, suitable for various types of robots. On rough terrain, the planned trajectory must verify several validity constraints : stability of the robot, mechanical limits and collision avoidance with the ground. Our approach relies on a static and kinematic model of the robot. Efficient geometric algorithms have been developed, taking advantage of each vehicle's specificities. Motion planning relies on an incremental search in the discretized configuration space and uses efficient heuristics based on terrain characteristic to limit the size of the search space. Simulation results present trajectories planned in a few seconds. The second part takes into account uncertainties to improve trajectory robustness: uncertainties on the terrain model and the position of the robot. The adaptation of the previous algorithms allows us to find robust trajectories, without any excessive time increase.  相似文献   

10.
This article proposes workspace analysis for redundant robot manipulators in the presence of obstacles. The analysis, based on a 3R planar robot and disk-shaped obstacles, is considered in detail and a computer program is developed for the calculation of the collision-free region of redundant robots. The research focuses on the state space of the robot with its end-effector forced to follow a linear path, with particular consideration of the effects of the link geometries and the location of the obstacles. © 1994 John Wiley & Sons, Inc.  相似文献   

11.
许维健  郑文波 《机器人》1990,12(5):40-45
本文应用在障碍时变工作空间中把固定障碍和时变障碍分解的思想.首先就固定障碍问题,为机器人规划一条无碰撞路径,然后通过规划机器人的速度来达到避开活动障碍的目的.本文接着提出在时间-路径空间中以忽略可动障碍时机器人的运动策略为基准策略,根据障碍约束和机器人速度或加速度约束,用有理二次函数来规划机器人避开可动障碍的运动策略.  相似文献   

12.
We propose a two-level hierarchy for planning collision-free trajectories in time varying environments. Global geometric algorithms for trajectory planning are used in conjunction with a local avoidance strategy. Simulations have been developed for a mobile robot in the plane among stationary and moving obstacles. Essentially, the robot has a global geometric planner that provides a coarse global trajectory (the path and velocity along it), which may be locally modified by the low-level local avoidance module if local sensors detect any obstacles in the vicinity of the robot. This hierarchy makes effective use of the complementary aspects of the global trajectory planning approaches and the local obstacle avoidance approaches.  相似文献   

13.
Neural network approaches to dynamic collision-free trajectorygeneration   总被引:9,自引:0,他引:9  
In this paper, dynamic collision-free trajectory generation in a nonstationary environment is studied using biologically inspired neural network approaches. The proposed neural network is topologically organized, where the dynamics of each neuron is characterized by a shunting equation or an additive equation. The state space of the neural network can be either the Cartesian workspace or the joint space of multi-joint robot manipulators. There are only local lateral connections among neurons. The real-time optimal trajectory is generated through the dynamic activity landscape of the neural network without explicitly searching over the free space nor the collision paths, without explicitly optimizing any global cost functions, without any prior knowledge of the dynamic environment, and without any learning procedures. Therefore the model algorithm is computationally efficient. The stability of the neural network system is guaranteed by the existence of a Lyapunov function candidate. In addition, this model is not very sensitive to the model parameters. Several model variations are presented and the differences are discussed. As examples, the proposed models are applied to generate collision-free trajectories for a mobile robot to solve a maze-type of problem, to avoid concave U-shaped obstacles, to track a moving target and at the same to avoid varying obstacles, and to generate a trajectory for a two-link planar robot with two targets. The effectiveness and efficiency of the proposed approaches are demonstrated through simulation and comparison studies.  相似文献   

14.
This paper addresses the problem of generating at the control-loop level a collision-free trajectory for a redundant manipulator operating in dynamic environments which include moving obstacles. The task of the robot is to follow, by the end-effector, a prescribed geometric path given in the work space. The control constraints resulting from the physical abilities of robot actuators are also taken into account during the robot movement. Provided that a solution to the aforementioned robot task exists, the Lyapunov stability theory is used to derive the control scheme. The numerical simulation results for a planar manipulator whose end-effector follows a prescribed geometric path, given in both an obstacle-free work space and a work space including the moving obstacles, illustrate the trajectory performance of the proposed control scheme.  相似文献   

15.
This paper addresses the challenging problem of finding collision-free trajectories for many robots moving toward individual goals within a common environment. Most popular algorithms for multirobot planning manage the complexity of the problem by planning trajectories for robots individually; such decoupled methods are not guaranteed to find a solution if one exists. In contrast, this paper describes a multiphase approach to the planning problem that uses a graph and spanning tree representation to create and maintain obstacle-free paths through the environment for each robot to reach its goal. The resulting algorithm guarantees a solution for a well-defined number of robots in a common environment. The computational cost is shown to be scalable with complexity linear in the number of the robots, and demonstrated by solving the planning problem for 100 robots, simulated in an underground mine environment, in less than 1.5 s with a 1.5 GHz processor. The practicality of the algorithm is demonstrated in a real-world application requiring coordinated motion planning of multiple physical robots.  相似文献   

16.
The wide potential applications of humanoid robots require that the robots can walk in complex environments and overcome various obstacles. To this end, we address the problem of humanoid robots stepping over obstacles in this paper. We focus on two aspects, which are feasibility analysis and motion planning. The former determines whether a robot can step over a given obstacle, and the latter discusses how to step over, if feasible, by planning appropriate motions for the robot. We systematically examine both of these aspects. In the feasibility analysis, using an optimization technique, we cast the problem into global optimization models with nonlinear constraints, including collision-free and balance constraints. The solutions to the optimization models yield answers to the possibility of stepping over obstacles under some assumptions. The presented approach for feasibility provides not only a priori knowledge and a database to implement stepping over obstacles, but also a tool to evaluate and compare the mobility of humanoid robots. In motion planning, we present an algorithm to generate suitable trajectories of the feet and the waist of the robot using heuristic methodology, based on the results of the feasibility analysis. We decompose the body motion of the robot into two parts, corresponding to the lower body and upper body of the robot, to meet the collision-free and balance constraints. This novel planning method is adaptive to obstacle sizes, and is, hence, oriented to autonomous stepping over by humanoid robots guided by vision or other range finders. Its effectiveness is verified by simulations and experiments on our humanoid platform HRP-2.  相似文献   

17.
Learning task-space tracking control on redundant robot manipulators is an important but difficult problem. A main difficulty is the non-uniqueness of the solution: a task-space trajectory has multiple joint-space trajectories associated, therefore averaging over non-convex solution space needs to be done if treated as a regression problem. A second class of difficulties arise for those robots when the physical model is either too complex or even not available. In this situation machine learning methods may be a suitable alternative to classical approaches. We propose a learning framework for tracking control that is applicable for underactuated or non-rigid robots where an analytical physical model of the robot is unavailable. The proposed framework builds on the insight that tracking problems are well defined in the joint task- and joint-space coordinates and consequently predictions can be obtained via local optimization. Physical experiments show that state-of-the art accuracy can be achieved in both online and offline tracking control learning. Furthermore, we show that the presented method is capable of controlling underactuated robot architectures as well.  相似文献   

18.
基于动力学约束的机器人无碰运动规划   总被引:5,自引:0,他引:5  
李大生  刘欣 《机器人》1990,12(5):14-19
本文旨在通过分析机器人系统的动力学特性来研究机器人在其工作环境中如何避开障碍物且按照预定路径运动的轨迹规划问题.文中提出了一种综合考虑多种约束条件的线性规划算法,该算法能够连续地调整系统的内能,且给出预期的运动轨迹.该算法已在IBM-PC2/80机上实现,成功地应用于我国某核电站的一反应蒸发器中检测机器人的无碰三维运动规划.文中给出了这一规划的结果及其图形仿真.  相似文献   

19.
This article presents a Cartesian-space position/force controller for redundant robots. The proposed control structure partitions the control problem into a nonredundant position/force trajectory tracking problem and a redundant mapping problem between Cartesian control input F ? R m and robot actuator torque T ? R n(for redundant robots, m < n). The underdetermined nature of the F → T map is exploited so that the robot redundancy is utilized to improve the dynamic response of the robot. This dynamically optimal F → T map is implemented locally (in time) so that it is computationally efficient for on-line control; however, it is shown that the map possesses globally optimal characteristics. Additionally, it is demonstrated that the dynamically optimal F→T map can be modified so that the robot redundancy is used to simultaneously improve the dynamic response and realize any specified kinematic performance objective (e.g., manipulability maximization or obstacle avoidance). Computer simulation results are given for a four degree of freedom planar redundant robot under Cartesian control, and demonstrate that position/force trajectory tracking and effective redundancy utilization can be achieved simultaneously with the proposed controller.  相似文献   

20.
Collision-free path planning for an industrial robot in configuration space requires mapping obstacles from robot‘s workspace into its configuration space.In this paper,an approach to real-time collision-free path planning for robots in configuration space is presented.Obstacle mapping is carried out by fundamental obstacles defined in the workspace and their images in the configuration space.In order to avoid dealing with unimportant parts of the configuration space that do not affect searching a collision-free path between starting and goal configurations,we construct a free subspace by slice configuration obstacles.In this free subspace,the collision-free path is determined by the A^* algorithm.Finally,graphical simulations show the effectiveness of the proposed approach.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号