首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
When non-equilibrium condensation occurs in a supersonic flow field, the flow is affected by the latent heat released. In the present study, in order to control the transonic flow field with shock wave, a condensing flow was produced by an expansion of moist air on a circular bump model and shock waves were occurred in the supersonic parts of the fields. Furthermore, the additional passive technique of shock / boundary layer interaction using the porous wall with a cavity underneath was adopted in this flow field. The effects of these methods on the shock wave characteristics were investigated numerically and experimentally. The result obtained showed that the total pressure loss in the flow fields might be effectively reduced by the suitable combination between non-equilibrium condensation and the position of porous wall.  相似文献   

2.
luttoductionMany studies on condensation occwhng in the caseof the rapid expansion of moist air mr steam in asupersonic nozzle have been performed experimentallyand numerically, and the characteristics of condensationhave been nearly clchfiedll4]. Schnerr et al.[5] and lriya atal.le] investigated the effect of condensation on thestrength of shock wave on suiface of wing, drag and liftnumerically. However, the. effect of condensation on theshock wave on s~e of wing and talulences behindshock wa…  相似文献   

3.
In recent years, separating and extracting technologies of condensate gas have been developed by combining a swirl flow with non-equilibrium condensation phenomena of condensate gas generated in a supersonic flow. The technology can reduce the size of the device and does not use chemicals. However, there are many unresolved problems for performance of the separation, extraction and operating principle. Therefore it is necessary to research further in order to improve the performance of the equipment. In the present study, the numerical study was carried out to clarify the effect of the heterogeneous condensation on the characteristics of the swirling flow field in a supersonic annular nozzle, and the differences between homogeneous condensation and heterogeneous condensation in the flow field. As the results, it is found that the condensation flow with a swirl affects the position of sonic line, the generating position of condensate and the radial distribution ratio of liquid phase.  相似文献   

4.
The unsteady phenomena in the transonic flow around airfoils are observed in the flow field of fan,compressorblades and butterfly valves,and this often causes serious problems such as the aeroacoustic noise,the vibration.In the transonic or supersonic flow where vapour is contained in the main flow,the rapid expansion of the flowmay give rise to a non-equilibrium condensation.However,the effect of non-equilibrium condensation on thetransonic internal flows around the airfoil has not yet been clarified satisfactorily.In the present study,the effectof non-equilibrium condensation of moist air on the self-excited shock wave oscillation on a circular arc bladewas investigated numerically.The results showed that in the case with non-equilibrium condensation,frequenciesof the flow oscillation became smaller than those without the non-equilibrium condensation.  相似文献   

5.
Control of supersonic flow fields with shock wave is important for some industrial fields. There are many studies for control of the supersonic flow fields using active or passive control. When non-equilibrium condensation occurs in a supersonic flow field, the flow is affected by latent heat released. Many studies for the condensation have been conducted and the characteristics have been almost clarified. Further, it was found that non-equilibrium condensation can control the flow field. In these studies, the condensation occurs across the passage of the flow field and it causes the total pressure loss in the flow field. However, local occurrence of non-equilibrium condensation in the flow field may change the characteristics of total pressure loss compared with that by the condensation across the passage of the nozzle and there are few for researches of locally occurred non-equilibrium condensation in supersonic flow field. The purpose in the present study is to clarify the effect of local occurrence of non-equilibrium condensation on the transonic flow field in a nozzle with a circular bump. As a result, local occurrence of non-equilibrium condensation reduced the shock strength and total pressure loss in the transonic flow field by flowing the moist air from trailing edge of the circular bump to the mainstream.  相似文献   

6.
In this paper, the effects of the passive technique by using the slotted wall on the characteristics of a condensation shock wave generated in a Prandtl-Meyer flow were investigated experimentally. Furthermore, in order to clarify the variation of condensation properties in the flow field, Navier-Stokes equations were solved numerically using a 3rd-order MUSCL type TVD finite-difference scheme with a second-order fractional-step for time integration. Baldwin-Lomax model was used as a turbulence model in the computations. From experimental results, it was found that the shock strength on the slotted wall became weak in comparison with no passive case (solid wall), and the present passive technique was the most effective when a foot of the condensation shock wave was located at the middle of slotted wall. Furthermore, it was confirmed numerically that the passive technique was also effective for the unsteady condensation shock wave.  相似文献   

7.
INTRODUCTIONManystudies[1-131onthecondensationshockwaveoccurringinthecaseoftheraPidexPansionofmoistairorsteaminasupersonicnozzlehavebeenper-formed,andthecharacteristicsofcondensationshock'wavehavenearlybeenclarilied.Acondensationshockwavealsooccursinthebladepassageinasteamturbinel14,15]andsuchacondensationshockwavinteractswiththeboundarylayeronthesurfaceoftheblade.Thus,thefiowinthebladepassageofthesteamturbinewiththecondensationshockwavehasnotyetbeenclariliedl16'17].InthepreseDtstudythee…  相似文献   

8.
The time-dependent behavior of non-equilibrium condensation of moist air through a Ludwieg tube with a diaphragm downstream is investigated by using a computational fluid dynamics work. The two-dimensional, compressible, Navier-Stokes equations, fully coupled with the condensate droplet growth equations, are numerically solved by a third-order MUSCL type TVD finite-difference scheme with a second-order fractional time step. Baldwin-Lomax turbulence model is employed to close the governing equations. The present computations represent the experimental flows well. The results obtained show that for an initial relative humidity over 40 %, the periodic excursions of the condensation shock occurs in the Ludwieg tube, and the frequency increases with the initial relative humidity. It is also found that total pressure loss due to non-equilibrium condensation in the Ludwieg tube should not be ignored even for a very low initial relative humidity. Furthermore, the variations of condensation properties are also di  相似文献   

9.
INTRODUCTIONMapstudies[1-13lonthecondensationshockwaveoccurringinthecaseoftherapidexpansionofmoistairorsteaminasupersonicnozzlehavebeenper-formed,andthecharacteristicsofcondensationshockwavhavenearlybeenclarified.Acondensationshockwavalsooccursinthebladepassageinasteamturbinel14'15].Suchacondensationshockwavethatinteractswiththeboundary1ayeronthesurfaceofthettirbineblade,affectsthellowinthebladepas-sageinasteamturbine.However,thefiowinthebladepaJssagewiththecondensationshockwaveisnotyetun…  相似文献   

10.
An experimental investigation on the unsteady tip flow field of a transonic compressor rotor has been performed.The casing-mounted high frequency response pressure transducers were arranged along both the blade chord and the blade pitch.The chord-wise ones were used to indicate both the ensemble averaged and time varying flow structure of the tip region of the rotor at different operating points under 95% design speed and 60% design speed.The pitch-wise circumferential transducers were mainly used to analyze the unsteadiness frequency of the tip leakage flow in the rotor frame at the near stall condition.The contours of casing wall pressure show that there were two clear low pressure regions in blade passages,one along the chord direction,caused by the leakage flow and the other along the tangential direction,maybe caused by the forward swept leading edge.Both low pressure regions were originated from the leading edge and formed a scissor-like flow pattern.At 95% design speed condition,the shock wave interacted with the low pressure region and made the flow field unsteady.With the mass flow reduced,the two low pressure regions gradually contracted to the leading edge and then a spike disturbance emerged.  相似文献   

11.
This paper presents a numerical analysis of the atmospheric air transonic flow through de Laval nozzles.By nature,atmospheric air always contains a certain amount of water vapor.The calculations were made using a Laval nozzle with a high expansion rate and a convergent-divergent (CD) "half-nozzle",referred to as a transonic diffuser,with a much slower expansion rate.The calculations were performed using an in-house CFD code.The computational model made it possible to simulate the formation of the liquid phase due to spontaneous condensation of water vapor contained in moist air.The transonic flow calculations also take account of the presence of a normal shock wave in the nozzle supersonic part to analyze the effect of the liquid phase evaporation.  相似文献   

12.
In this study,a transonic flow past NACA0012 profile at angle of attack α=00 whose aspect ratio AR is 1.0 with non-equilibrium condensation is analyzed by numerical analysis using a TVD scheme and is investigated using an intermittent indraft type supersonic wind tunnel.Transonic flows of 0.78-0.90 in free stream Mach number with the variations of the stagnation relative humidity(Φ0)are tested.For the same free stream Mach number,the increase in Φ0 causes decrease in the drag coefficient of profile which is composed of the drag components of form,viscous and wave.In the case of the same M∞ and T0,for more than Φ0=30%,despite the irreversibility of process in non-equilibrium condensation,the drag by shock wave decreases considerably with the increase of Φ0.On the other hand,it shows that the effect of condensation on the drag coefficients of form and viscous is negligible.As an example,the decreasing rate in the drag coefficient of profile caused by the influence of non-equilibrium condensation for the case of M∞=0.9 and Φ0=50% amounts to 34%.Also,it were turned out that the size of supersonic bubble(that is,the maximum height of supersonic zone)and the deviation of pressure coefficient from the value for M=1 decrease with the increase of Φ0 for the same M∞.  相似文献   

13.
Transonic internal flow around an airfoil is associated with self-excited unsteady shock wave oscillation. This unsteady phenomenon generates buffet, high speed impulsive noise, non-synchronous vibration, high cycle fatigue failure and so on. Present study investigates the effectiveness of perforated cavity to control this unsteady flow field. The cavity has been incorporated on the airfoil surface. The degree of perforation of the cavity is kept constant as 30%. However, the number of openings (perforation) at the cavity upper wall has been varied. Results showed that this passive control reduces the strength of shock wave compared to that of baseline airfoil. As a result, the intensity of shock wave/boundary layer interaction and the root mean square (RMS) of pressure oscillation around the airfoil have been reduced with the control method.  相似文献   

14.
When a gas expands through a convergent nozzle in which the ratio of the ambient to the stagnation pressures is higher than that of the critical one, the issuing jet from the nozzle is under-expanded. If a flat plate is placed normal to the jet at a certain distance from the nozzle, a detached shock wave is formed at a region between the nozzle exit and the plate. In general, supersonic moist air jet technologies with non-equilibrium condensation are very often applied to industrial manufacturing processes. In spite of the importance in major characteristics of the supersonic moist air jets impinging to a solid body, its qualitative characteristics are not known satisfactorily. In the present study, the effect of the non-equilibrium condensation on the under-expanded air jet impinging on a vertical flat plate is investigated numerically in the case with non-equilibrium condensation, frequency of oscillation for the flow field becomes larger than that without the non-equilibrium condensation, and amplitudes of static pressure become small compared with those of dry air. Furthermore, the numerical results are compared with experimental ones.  相似文献   

15.
Numerical simulations have been carried out for a supersonic two-dimensional flow over open,rectangular cavi-ties(length-to-depth ratios are L/D=1.0 and 3.0)in order to investigate the effect of non-equilibrium condensa-tion of moist air on supersonic internal flows around the cavity for the flow Mach number 1.83 at the cavity en-trance.In the present computational investigation,a condensing flow was produced by an expansion of moist airin a Laval nozzle.The computational results showed that the upstream traveling compression waves becomeweaker than those without the condensation.Consequently,the weaker compression waves cannot excite theshear layer strongly and amplitudes of oscillation in the cavity became smaller than those without the condensa-tion.The occurrence of the non-equilibrium condensation in case of L/D=1.0 affected strongly the amplitude andfrequency of oscillation in the cavity compared with L/D=3.0.  相似文献   

16.
17.
The major flow physics of the unsteady condensation in the subsonic flows induced by the unsteady expansion waves in shock tube was studied in this paper. The unsteady condensation phenomenon was analyzed by using the two-dimensional, unsteady, Navier-Stokes equations, which were fully coupled with a droplet growth equation. The third-order TVD MUSCL scheme was applied to solve the governing equation systems. The computational results were compared with the previous experimental data. The time-dependent behavior of unsteady condensation of moist air in shock tube was investigated in details. The results show that the major characteristics of the unsteady condensation phenomenon in shock tube are very different from those in the supersonic wind tunnels.  相似文献   

18.
The effect of nozzle geometry on sonic line and characteristics of supersonic air jet was studied. Computational fluid dynamics was applied in this study. The axisymmetric nozzle geometries investigated were two different contour converging nozzles, two different conically converging sharp-edged nozzles and a sharp-edged orifice. The results show that the supersonic jet structure, sonic line and streamlines in supersonic jet are strongly influenced by the nozzle geometry, and the total pressure loss increases with the increase of Mach disk diameter. The present numerical simulation is an effective tool to evaluate compressible flows in supersonic air jet.  相似文献   

19.
<正>It is well known that tip leakage flow has a strong effect on the compressor performance and stability. This paper reports on a numerical investigation of detailed flow structures in an isolated transonic compressor rotor-NASA Rotor 37 at near stall and stalled conditions aimed at improving understanding of changes in 3D tip leakage flow structures with rotating stall inception.Steady and unsteady 3D Navier-Stokes analyses were conducted to investigate flow structures in the same rotor.For steady analysis,the predicted results agree well with the experimental data for the estimation of compressor rotor global performance.For unsteady flow analysis, the unsteady flow nature caused by the breakdown of the tip leakage vortex in blade tip region in the transonic compressor rotor at near stall condition has been captured with a single blade passage.On the other hand, the time-accurate unsteady computations of multi-blade passage at near stall condition indicate that the unsteady breakdown of the tip leakage vortex triggered the short length-scale-spike type rotating stall inception at blade tip region.It was the forward spillage of the tip leakage flow at blade leading edge resulting in the spike stall inception. As the mass flow ratio is decreased,the rotating stall cell was further developed in the blade passage.  相似文献   

20.
StudyonCharacteristicsofSteadyFlowCondensationHeatTransferinaTubeunderZero-GravitationQnWei(HarbinInstituteofTechnology,Harbi...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号