首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A series of the Ce1−xCuxO2−x/Al2O3/FeCrAl catalysts (x = 0–1) were prepared. The structure of the catalysts was characterized using XRD, SEM and H2-TPR. The catalytic activity of the catalysts for the combustion of methane was evaluated. The results indicated that in the Ce1−xCuxO2−x/Al2O3/FeCrAl catalysts the surface phase structure were the Ce1−xCuxO2−x solid solution, -Al2O3 and γ-Al2O3. The surface particle shape and size were different with the variety of the molar ratio of Ce to Cu in the Ce1−xCuxO2−x solid solution. The Cu component of the Ce1−xCuxO2−x/Al2O3/FeCrAl catalysts played an important role to the catalytic activity for the methane combustion. There were the stronger interaction among the Ce1−xCuxO2−x solid solution and the Al2O3 washcoats and the FeCrAl support.  相似文献   

2.
Nanoparticles of CexZr1−xO2 (x = 0.75, 0.62) were prepared by the oxidation-coprecipitation method using H2O2 as an oxidant, and characterized by N2 adsorption, XRD and H2-TPR. CexZr1−xO2 prepared had single fluorite cubic structure, good thermal stability and reduction property. With the increasing of Ce/Zr ratio, the surface area of CexZr1−xO2 increased, but thermal stability of CexZr1−xO2 decreased. The surface area of Ce0.62Zr0.38O2 was 41.2 m2/g after calcination in air at 900 °C for 6 h. TPR results showed the formation of solid solution promoted the reduction of CeO2, and the reduction properties of CexZr1−xO2 were enhanced by the cycle of TPR-reoxidation. The Pd-only three-way catalysts (TWC) were prepared by the impregnation method, in which Ce0.75Zr0.25O2 was used as the active washcoat and Pd loading was 0.7 g/L. In the test of Air/Fuel, the conversion of C3H8 was close to 100% and NO was completely converted at λ < 1.025. The high conversion of C3H8 was induced by the steam reform and dissociation adsorption reaction of C3H8. Pd-only catalyst using Ce0.75Zr0.25O2 as active washcoat showed high light off activity, the reaction temperatures (T50) of 50% conversion of CO, C3H8 and NO were 180, 200 and 205 °C, respectively. However, the conversions of C3H8 and NO showed oscillation with continuously increasing the reaction temperature. The presence of La2O3 in washcoat decreased the light off activity and suppressed the oscillation of C3H8 and NO conversion. After being aged at 900 °C for 4 h, the operation windows of catalysts shifted slightly to rich burn. The presence of La2O3 in active washcoat can enhance the thermal stability of catalyst significantly.  相似文献   

3.
Catalytic methane combustion and CO oxidation were investigated over AFeO3 (A=La, Nd, Sm) and LaFe1−xMgxO3 (x=0.1, 0.2, 0.3, 0.4, 0.5) perovskites prepared by citrate method and calcined at 1073 K. The catalysts were characterized by X-ray diffraction (XRD). Redox properties and the content of Fe4+ were derived from temperature programmed reduction (TPR). Specific surface areas (SA) of perovskites were in 2.3–9.7 m2 g−1 range. XRD analysis showed that LaFeO3, NdFeO3, SmFeO3 and LaFe1−xMgxO3 (x·0.3) are single phase perovskite-type oxides. Traces of La2O3, in addition to the perovskite phase, were detected in the LaFe1−xMgxO3 catalysts with x=0.4 and 0.5. TPR gave evidence of the presence in AFeO3 of a very small fraction of Fe4+ which reduces to Fe3+. The fraction of Fe4+ in the LaFe1−xMgxO3 samples increased with increasing magnesium content up to x=0.2, then it remained nearly constant. Catalytic activity tests showed that all samples gave methane and CO complete conversion with 100% selectivity to CO2 below 973 and 773 K, respectively. For the AFeO3 materials the order of activity towards methane combustion is La>Nd>Sm, whereas the activity, per unit SA, of the LaFe1−xMgxO3 catalysts decreases with the amount of Mg at least for the catalysts showing a single perovskite phase (x=0.3). Concerning the CO oxidation, the order of activity for the AFeO3 materials is Nd>La>Sm, while the activity (per unit SA) of the LaFe1−xMgxO3 catalysts decreases at high magnesium content.  相似文献   

4.
The effect of the Pd addition method into the fresh Pd/(OSC + Al2O3) and (Pd + OSC)/Al2O3 catalysts (OSC material = CexZr1−xO2 mixed oxides) was investigated in this study. The CO + NO and CO + NO + O2 model reactions were studied over fresh and aged catalysts. The differences in the fresh catalysts were insignificant compared to the aged catalysts. During the CO + NO reaction, only small differences were observed in the behaviour of the fresh catalysts. The light-off temperature of CO was about 20 °C lower for the fresh Pd/(OSC + Al2O3) catalyst than for the fresh (Pd + OSC)/Al2O3 catalyst during the CO + NO + O2 reaction. For the aged catalysts lower NO reduction and CO oxidation activities were observed, as expected. Pd on OSC-containing alumina was more active than Pd on OSC material after the agings. The activity decline is due to a decrease in the number of active sites on the surface, which was observed as a larger Pd particle size for aged catalysts than for fresh catalysts. In addition, the oxygen storage capacity of the aged Pd/(OSC + Al2O3) catalyst was higher than that of the (Pd + OSC)/Al2O3 catalyst.  相似文献   

5.
A series of CoOx/Al2O3 catalysts was prepared, characterized, and applied for the selective catalytic reduction (SCR) of NO by C3H8. The results of XRD, UV–vis, IR, Far-IR and ESR characterizations of the catalysts suggest that the predominant oxidation state of cobalt species is +2 for the catalysts with low cobalt loading (≤2 mol%) and for the catalysts with 4 mol% cobalt loading prepared by sol–gel and co-precipitation. Co3O4 crystallites or agglomerates are the predominant species in the catalysts with high cobalt loading prepared by incipient wetness impregnation and solid dispersion. An optimized CoOx/Al2O3 catalyst shows high activity in SCR of NO by C3H8 (100% conversion of NO at 723 K, GHSV: 10,000 h−1). The activity of the selective catalytic reduction of NO by C3H8 increases with the increase of cobalt–alumina interactions in the catalysts. The influences of cobalt loading and catalyst preparation method on the catalytic performance suggest that tiny CoAl2O4 crystallites highly dispersed on alumina are responsible for the efficient catalytic reduction of NO, whereas Co3O4 crystallites catalyze the combustion of C3H8 only.  相似文献   

6.
The water-gas shift (WGS) activity of platinum catalysts dispersed on a variety of single metal oxides as well as on composite MOx/Al2O3 and MOx/TiO2 supports (M = Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Y, Zr, La, Ce, Nd, Sm, Eu, Gd, Ho, Er, Tm) has been investigated in the temperature range of 150–500 °C, using a feed composition consisting of 3% CO an 10% H2O. For Pt catalysts supported on single metal oxides, it has been found that both the apparent activation energy of the reaction and the intrinsic rate depend strongly on the nature of the support. In particular, specific activity of Pt at 250 °C is 1–2 orders of magnitude higher when supported on “reducible” compared to “irreducible” metal oxides. For composite Pt/MOx/Al2O3 and Pt/MOx/TiO2 catalysts, it is shown that the presence of MOx results in a shift of the CO conversion curve toward lower reaction temperatures, compared to that obtained for Pt/Al2O3 or Pt/TiO2, respectively. The specific reaction rate is in most cases higher for composite catalysts and varies in a manner which depends on the nature, loading, and primary crystallite size of dispersed MOx. Results are explained by considering that reducibility of small oxide particles increases with decreasing crystallite size, thereby resulting in enhanced WGS activity. Therefore, evidence is provided that the metal oxide support is directly involved in the WGS reaction mechanism and determines to a significant extent the catalytic performance of supported noble metal catalysts. Results of catalytic performance tests obtained under realistic feed composition, consisting of 3% CO, 10% H2O, 20% H2 and 6% CO2, showed that certain composite Pt/MOx/Al2O3 and Pt/MOx/TiO2 catalysts are promising candidates for the development of active WGS catalysts suitable for fuel cell applications.  相似文献   

7.
Several hexaaluminate-related materials were prepared via hydrolysis of alkoxide and powder mixing method for high temperature combustion of CH4 and C3H8, in order to investigate the effect of the concentration of the fuels, O2 and H2O on NOx emission and combustion characteristics. Among the hexaaluminate catalysts, Sr0.8La0.2MnAl11O19− prepared by the alkoxide method exhibited the highest activity for methane combustion and low NOx emission capability. NOx emission at 1500 °C was increased linearly with O2 concentration, whereas water vapor addition decreased NOx emission in CH4 combustion over the Sr0.8La0.2MnAl11O19− catalyst. In the catalytic combustion of C3H8 over the Sr0.8La0.2MnAl11O19− catalyst, the amount of NOx emitted was raised in the temperature range between 1000 and 1500 °C when the C3H8 concentration increased from 1 to 2 vol.%. It was found that NOx emission in this temperature range was reduced effectively by adding water vapor.  相似文献   

8.
The catalytic performance of mono- and bimetallic Pd (0.6, 1.0 wt.%)–Pt (0.3 wt.%) catalysts supported on ZrO2 (70, 85 wt.%)–Al2O3 (15, 0 wt.%)–WOx (15 wt.%) prepared by sol–gel was studied in the hydroisomerization of n-hexane. The catalysts were characterized by N2 physisorption, XRD, TPR, XPS, Raman, NMR, and FT-IR of adsorbed pyridine. The preparation of ZrW and ZrAlW mixed oxides by sol–gel favored the high dispersion of WOx and the stabilization of zirconia in the tetragonal phase. The Al incorporation avoided the formation of monoclinic-WO3 bulk phase. The catalysts increased their SBET for about 15% promoted by Al2O3 addition. Various oxidation states of WOx species coexist on the surface of the catalysts after calcination. The structure of the highly dispersed surface WOx species is constituted mainly of isolated monotungstate and two-dimensional mono-oxotungstate species in tetrahedral coordination. The activity of Pd/ZrW catalysts in the hydroisomerization of n-hexane is promoted both with the addition of Al to the ZrW mixed oxide and the addition of Pt to Pd/ZrAlW catalysts. The improvement in the activity of Pd/ZrAlW catalysts is ascribed to a moderated acid strength and acidity, which can be correlated to the coexistence of W6+ and reduced-state WOx species (either W4+ or W0). The addition of Pt to the Pd/ZrAlW catalyst does not modify significantly its acidic character. Selectivity results showed that the catalyst produced 2MP, 3MP and the high octane 2,3-dimethylbutane (2,3-DMB) and 2,2-dimethylbutane (2,2-DMB) isomers.  相似文献   

9.
The catalytic photodegradation of phenol and 4-chlorophenol with white and UV light over TiO2, BaTi4O9 and Hollandite catalysts has been studied in our laboratories. BaTi4O9 and Hollandite catalysts were prepared by solid state reaction at 900°C and 1200°C, respectively. All the catalysts were characterized by different techniques such as surface area measurements by the BET method, atomic absorption spectroscopy and XRD. Photodegradation reaction experiments were monitored by HPLC analysis. The reaction intermediates: hydroquinone and 1,4-benzoquinone were identified by GC–MS analysis. The photocatalytic activities of these catalysts in the degradation of phenol and 4-chlorophenol were evaluated in comparison with titanium oxide. Experimental results showed that BaTi4O9 and Hollandite catalysts exhibit small photocatalytic activity as compared with TiO2.  相似文献   

10.
The NOx storage behavior of a series of Pt-Ba/Al2O3 catalysts, prepared by wet impregnation of Pt/Al2O3 with Ba(Ac)2, has been investigated. The catalysts with Ba loadings in the range 4.5–28 wt.% were calcined at 500 °C in air and subsequently exposed to NO pulses in 5 vol.% O2/He atmosphere. Catalysts were characterized by means of thermogravimetry (TG) combined with mass spectroscopy (MS) and XRD before and after exposure to NO pulses. Characterization of the calcined catalysts corroborated the existence of three Ba-containing phases which are discernible based on their different thermal stability: BaO, LT-BaCO3 and HT-BaCO3. Characterization after NOx exposure showed that the different Ba-containing phases present in the catalysts possess different reactivity for barium nitrate formation, depending on their interfacial contact. The different Ba(NO3)2 species produced upon NOx exposure could be distinguished based on their thermal stability. The study revealed that during the NOx storage process a new thermally instable BaCO3 phase formed by reaction of evolved CO2 with active BaO. The fraction of Ba-containing species that were active in NOx storage depended on the Ba loading, showing a maximum at a Ba loading of about 17 wt.%. Lower and higher Ba loading resulted in a significant loss of the overall efficiency of the Ba-containing species in the storage process. The loss in efficiency observed at higher loading is attributed to the lower reactivity of the HT-BaCO3, which becomes dominant at higher loading, and the increased mass transfer resistance.  相似文献   

11.
Ceramics with a composition close to BaZn2Ti4O11 were synthesized according to various substitutional mechanisms in order to verify an existence of a homogeneity range in the vicinity of this composition. Structural and microstructural investigations showed that the crystal structure of BaZn2Ti4O11 was formed in the homogeneity range corresponding to the formula BaZn2 − xTi4O11 − x (0 < x < 0.1). Densely sintered BaZn2 − xTi4O11 − x (0 < x < 0.1) ceramics exhibited a dielectric constant around 30, τf = −30 ppm/K and high Q × f values, which increased from 68,000 GHz at x = 0 to 83,000 GHz at x = 0.05. Structurally, the deficiency of Zn in BaZn2 − xTi4O11 − x (0 < x < 0.1) resulted in a slight decrease in the unit-cell volume. The influence of secondary phases in the BaZn2Ti4O11-based materials on the microwave dielectric properties was also investigated. A presence of small amounts of ZnO, BaTiO3, hollandite-type solid solutions (BaxZnxTi8 − xO16) and BaTi4O9 caused a decrease in Q × f values.  相似文献   

12.
The nanometer particles of two FexOy/TiO2’s with high photocatalytic activities were obtained through hydrothermal treatment and impregnation method. The XRD result did not show the peaks assigned to the Fe components (for example Fe2O3, Fe3O4, FeO3, and Fe metal) on the external surface of the anatase structure in the FexOy/TiO2 attained through hydrothermal treatment. This meant that Fe components were well incorporated into the TiO2 anatase structure. In addition, it exhibited uniform anatase structure with particle size of below 50 nm. The FeO3 component on the external surface of the TiO2 anatase structure was identified in the Fe-loaded TiO2 prepared through the impregnation method. In particular, the FT-IR spectroscopy revealed that the FexOy/TiO2 particle attained through hydrothermal treatment had higher hydrophilic property compared to the other catalysts. Together with the Fe component, they absorbed wavelength of above 370 nm. The band slightly shifted to the right without tail broadness, which was the UV absorption of Fe oxide in the FexOy/TiO2 particle attained through hydrothermal method. This meant that Fe components were well inserted into the framework of the TiO2 anatase structure. Despite the red shift in UV-Vis absorption, however, CHCl3 decomposition on the FexOy/TiO2 catalyst was not largely enhanced compared to pure TiO2.  相似文献   

13.
This paper deals with the activity of bimetallic potassium–copper and potassium–cobalt catalysts supported on alumina for the reduction of NOx with soot from simulated diesel engine exhaust. The effect of the reaction temperature, the soot/catalyst mass ratio and the presence of C3H6 has been studied. In addition, the behavior of two monometallic catalysts supported on zeolite beta (Co/beta and Cu/beta), previously used for NOx reduction with C3H6, as well as a highly active HC-SCR catalyst (Pt/beta) has been tested for comparison. The preliminary results obtained in the absence of C3H6 indicate that, at temperatures between 250 and 400 °C, the use of bimetallic potassium catalysts notably increases the rate of NOx reduction with soot evolving N2 and CO2 as main reaction products. At higher temperatures, the catalysts mainly favor the direct soot combustion with oxygen. In the presence of C3H6, an increase in the activity for NOx reduction has been observed for the catalyst with the highest metal content. At 450 °C, the copper-based catalysts (Cu/beta and KCu2/Al2O3) show the highest activity for both NOx reduction (to N2 and CO2) and soot consumption. The Pt/beta catalyst does not combine, at any temperature, a high NOx reduction with a high soot consumption rate.  相似文献   

14.
Structural, redox and catalytic deep oxidation properties of LaAl1−xMnxO3 (x=0.0, 0.05, 0.1, 0.2, 0.4, 0.6, 0.8, 1.0) solid solutions prepared by the citrate method and calcined at 1073 K were investigated. XRD analysis showed that all the LaAl1−xMnxO3 samples are single phase perovskite-type solid solutions. Particle sizes and surface areas (SA) are in the 280–1180 Å and 4–33 m2 g−1 ranges, respectively. Redox properties and the content of Mn4+ were derived from temperature programmed reduction (TPR) with H2. Two reduction steps are observed by TPR for pure LaMnO3, the first attributed to the reduction of Mn4+ to Mn3+ and the second due to complete reduction of Mn3+ to Mn2+. The presence of Al in the LaAl1−xMnxO3 solid solutions produces a strong promoting effect on the Mn4+→Mn3+ reducibility and inhibits the further reduction to Mn2+. Both for methane combustion and CO oxidation all Mn-containing perovskites are much more active than LaAlO3, so pointing to the essential role of the transition metal ion in developing highly active catalysts. Partial dilution with Al appears to enhance the specific activity of Mn sites for methane combustion.  相似文献   

15.
Operating the SCR DeNOx reactor at temperatures below 200 °C results in a considerable saving in operating costs. Plant experience shows that on the catalysts in these second generation DeNOx plants, even for flue gases with SO2 concentration below 10 mg/m3, over 1–2 years operating time sizeable quantities of ammonium sulfates accumulate. Ammonium sulfates deposited on V2O5–WO3/TiO2 catalysts react with NOx to nitrogen and sulfuric acid. Second-order rate constants of this reaction for temperatures of 170 °C have been derived. It could be shown that the sulfuric acid formed on the catalyst is displaced by water vapour and desorbs resulting in gas phase concentrations of up to 6.5 mg acid/m3 flue gas. Plant equipment downstream of the ammonium sulfate containing low temperature DeNOx catalysts has to be protected against the corrosive action of the sulfuric acid in the flue gases leaving the DeNOx reactor.  相似文献   

16.
Pt-based catalysts have been prepared using supports of different nature (γ-Al2O3, ZSM-5, USY, and activated carbon (ROXN)) for the C3H6-SCR of NOx in the presence of excess oxygen. Nitrogen adsorption at 77 K, pH measurements, temperature-programmed desorption of propene, and H2 chemisorption were used for the characterization of the different supports and catalysts. The performance of these catalysts has been compared in terms of de-NOx activity, hydrocarbon adsorption and combustion at low temperature, and selectivity to N2. Maximum NOx conversions for all the catalysts were achieved in the temperature range of 200–250°C. The order of activity was, Pt-USY>Pt/ROXNPt-ZSM-5Pt/Al2O3. At temperatures above 300°C only Pt/ROXN maintains a high activity caused by the consumption of the support, while the other catalysts present a strong deactivation. Propene combustion starts at the same temperature for all the catalytic systems (160°C). Complete hydrocarbon combustion is directly related to the acidity of the support, thus determining the temperature of the maximum NOx reduction. The support play an important role in the reaction mechanism through the hydrocarbon activation. N2O formation was observed for all the catalysts. N2 selectivity ranges from 15 to 30% with the order, Pt/ROXN>Pt-USYPt/Al2O3>Pt-ZSM-5. The catalytic systems exhibit a stable operation under isothermal conditions during time-on-stream experiments.  相似文献   

17.
Atomic layer epitaxy (ALE), a technique relying on saturating gas–solid reactions, was applied in the preparation of CrOx/Al2O3 catalysts using Cr(acac)3 vapor and air as source materials for CrOx. Vaporized Cr(acac)3 was reacted with preheated Al2O3, and the surface complex formed was treated with air to remove the ligand residues. The Cr loading increased from 1.3 to 12.5 wt.% as the number of saturating Cr(acac)3 and air reactions was increased from one to 10. CrOx/Al2O3 catalysts were also prepared from solution by incipient wetness impregnation (0.3–21 wt.%). XPS and UV–VIS measurements of the catalysts revealed the presence of both Cr6+ and Cr3+. Although the oxidation state distribution was similar, H2-temperature programmed reduction (TPR) and solubility measurements indicated that Cr6+ surface sites were in stronger interaction with Al2O3 and more uniformly distributed in the catalysts prepared by ALE than by impregnation. On the basis of the activity of the catalysts in the dehydrogenation of i-butane, we propose that the dehydrogenation reaction uses both reduced Cr6+, i.e. redox Cr3+, and exposed non-redox Cr3+ sites. Furthermore, the dehydrogenation reaction must be insensitive to the size of the CrOx ensembles since activities were similar for the catalysts prepared by ALE and impregnation. The decay of the dehydrogenation activity in successive prereduction–reaction–regeneration cycles was attributed to a decrease in the number of redox Cr3+ sites.  相似文献   

18.
Vanadium oxides supported on γ-Al2O3, SiO2, TiO2, and ZrO2 were studied on their molecular structures and reactive performances for soot combustion. To investigate the effect of different alkali metals on the structures and reactivities of supported-vanadium oxide catalysts, they were doped into the V4/TiO2 catalyst which had the best intrinsic activity for soot combustion in the selected supported vanadium oxide catalysts. The experimental results demonstrated that the catalytic properties of these catalysts depended on the vanadium loading amount, support nature, and the presence or the absence of alkali metals. The spectroscopic analysis (FT-IR and UV–vis) and H2-TPR results revealed that the higher activity of alkali-promoted vanadium oxide catalysts could be related to the ability of alkali metal promoting the redox cycle of the active vanadyl species. TG results showed that adding alkali to Vm/TiO2 catalyst was beneficial to lowering their melting points. Low melting points could ensure the good surface atom migration ability, which would improve the contact between the catalyst and soot. Due to the alkali metal components promoting the redox ability and the mobility of the catalysts, alkali-modified vanadium oxide catalysts could remarkably improve their catalytic activities for soot combustion. The catalytic activity order for soot combustion followed Li > Na > K > Rb > Cs in the catalyst system of alkali-V4/TiO2, and the reason why it followed this sequence was discussed.  相似文献   

19.
To clarify the effect of substitutional electron doping on the thermoelectric figure of merit (ZT = S2σTκ−1) of Ruddlesden–Popper phase SrO(SrTiO3)n (or Srn+1TinO3n+1), measurements were conducted for several thermoelectric parameters, e.g. electrical conductivity (σ), Seebeck coefficient (S) and thermal conductivity (κ), of (Sr1−xREx)n+1TinO3n+1 (n = 1 or 2, RE (rare earth): La or Nd, x = 0.05 and 0.1) dense ceramics prepared by a conventional solid-state reaction and hot-pressing technique. Crystal structures of the resultant ceramics were represented as (Sr1−xREx)n+1 TinO3n+1 evaluated by powder X-ray diffraction followed by the Rietveld analysis. All the ceramics exhibited electrical conductivity and the σ values simply depended on the dopant concentration, indicating that both La3+ and Nd3+ ions act as electron donors. The |S| values increased with temperature due to decrease in the chemical potential. Significant reduction of the κ values was observed as compared to cubic-perovskite SrTiO3. The ZT value increased with temperature and reached 0.15 at 1000 K for (Sr0.95La0.05)3Ti2O7.  相似文献   

20.
Reaction activities of several developed catalysts for NO oxidation and NOx (NO + NO2) reduction have been determined in a fixed bed differential reactor. Among all the catalysts tested, Co3O4 based catalysts are the most active ones for both NO oxidation and NOx reduction reactions even at high space velocity (SV) and low temperature in the fast selective catalytic reduction (SCR) process. Over Co3O4 catalyst, the effects of calcination temperatures, SO2 concentration, optimum SV for 50% conversion of NO to NO2 were determined. Also, Co3O4 based catalysts (Co3O4-WO3) exhibit significantly higher conversion than all the developed DeNOx catalysts (supported/unsupported) having maximum conversion of NOx even at lower temperature and higher SV since the mixed oxide Co-W nanocomposite is formed. In case of the fast SCR, N2O formation over Co3O4-WO3 catalyst is far less than that over the other catalysts but the standard SCR produces high concentration of N2O over all the catalysts. The effect of SO2 concentration on NOx reduction is found to be almost negligible may be due to the presence of WO3 that resists SO2 oxidation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号