首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The interactions between pig heart citrate synthase and mitochondrial malate dehydrogenase or cytosolic malate dehydrogenase were studied using the frontal analysis method of gel filtration and by precipitation in polyethylene glycol. This method showed that an interaction between citrate synthase and mitochondrial malate dehydrogenase occurred but no interaction between citrate synthase and cytosolic malate dehydrogenase. Channeling of oxaloacetate in the malate dehydrogenase and citrate synthase-coupled systems was tested using polyethylene glycol precipitates of citrate synthase and mitochondrial malate dehydrogenase, and citrate synthase and cytosolic malate dehydrogenase. The effectiveness of large amounts of aspartate aminotransferase and oxaloacetate decarboxylase, as competing enzymes for the intermediate oxaloacetate, was examined. Aspartate aminotransferase and oxaloacetate decarboxylase were less effective competitors for oxaloacetate when precipitated citrate synthase and mitochondrial malate dehydrogenase in polyethylene glycol was used at low ionic strength compared with free enzymes in the absence of polyethylene glycol or with a co-precipitate of citrate synthase and cytosolic malate dehydrogenase. Substrate channeling of oxaloacetate with citrate synthase-mitochondrial malate dehydrogenase precipitate was inefficient at high ionic strength. These effects could be explained through electrostatic interactions of mitochondrial but not cytosolic malate dehydrogenase with citrate synthase.  相似文献   

2.
The multiple molecular forms of cytoplasmic malate dehydrogenase (cMDH), mitochondrial malate dehydrogenase (mMDH) and lactate dehydrogenase (LDH) were studied in the liver and skeletal muscle of the freshwater catfish, Clarias batrachus. There were two electrophoretically distinguishable bands (AA and BB) of cMDH and mMDH which suggests that they are apparently encoded at two gene loci (A and B) in both the tissues. However, the presence of a single band (LDH-1) of LDH in liver and double bands (LDH-1 and LDH-2) in skeletal muscle in which LDH-2 was predominant reflects the differential expression of LDH genes in different metabolic tissues to meet the requirement of energy production. The AA isoform (74 kd) of liver cMDH was smaller than those of the AA form (110 kd) of skeletal muscle. In contrast, the BB isoform of liver (42 kd) and skeletal muscle (54 kd) were more or less similar in size. Unlike the case of cMDH, the molecular weight of AA isoform (115 kd) of liver mMDH was higher than those of the AA form (87 kd) of skeletal muscle. Whereas the molecular weight of BB isoform (58 kd) of liver was in proximity to the weight of BB form (44 kd) of skeletal muscle mMDH. The size of AA isoform (74 kd) of liver cMDH was smaller, while the AA isoform (110 kd) of skeletal muscle was larger as compared to AA form of mMDH in the liver (115 kd) and skeletal muscle (87 kd). But the size of BB isoform of both the isozymes was almost equal in these metabolic tissues.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
pH-titrations with NADH show two ionizable groups in mitochondrial and cytoplasmic malate dehydrogenase, the first with a pKa in the range 6.8-8.3 for the mitochondrial and 6.4-7.8 for the cytoplasmic enzyme, the second with a lower limit at 10.2 resp. 11. Comparison with bis-(dihydronicotinamide)-dinucleotide and dihydronicotinamide-ribosyl-P2-ribose-pyrophosphate instead of NADH indicates that the second alkaline ionization is caused by a residue placed near the adenine binding site of the active centre of the two isoenzymes. Binding studies with NADH and NAD+ give evidence for the participation of a group in the mitochondrial enzyme with pKa 6.8, deprotonation of which is necessary for detectable association of NAD+. In contrast the fixation of NAD+ to the cytoplasmic enzyme is independent of pH.  相似文献   

4.
The malate dehydrogenase isoenzymes from Physarum polycephalum have been purified to homogeneity as confirmed by gel filtration chromatography, polyacrylamide gel disc electrophoresis and analytical ultracentrifugation. Certain physical and chemical parameters of the malate dehydrogenase isoenzymes reported here include sedimentation, molecular weight and subunit molecular weight. Most unique of the differences between the isoenzymes were the widely separate isoelectric points of 9.83 for mitochondrial malate dehydrogenase and 6.14 for the supernatant malate dehydrogenase. The amino acid analyses of each form were done revealing the isoenzymes were unquestionably unique proteins differing in the content of ten amino acids.  相似文献   

5.
The binding of partially-folded mitochondrial malate dehydrogenase (mMDH) to GroEL was assessed by steady and nanosecond emission spectroscopy. Partially-folded intermediates of mMDH show significant residual secondary structure when examined by CD spectroscopy in the far UV. They bind the extrinsic fluorescent probe ANS and the protein-ANS complexes display a rotational correlation time of 19 ns. Similar rotational correlation time (phi = 18.6 ns) was determined for partially-folded species tagged with anthraniloyl. GroEL recognizes partially-folded species with a K(D) approximately 60 nM. The rotational correlation time of the complex, i.e., GroEL-mMDH-ANT, approaches a value of 280 ns in the absence of ATP. Reactivation of mMDH-ANT by addition of GroEL and ATP brings about a significant decrease in the observed rotational correlation time. The results indicate that partially-folded malate dehydrogenase is rigidly trapped by GroEL in the absence of ATP, whereas addition of ATP facilitates reactivation and release of folded conformations endowed with catalytic activity.  相似文献   

6.
A technique for studying the catalytic activity of enzymes spread as a film at an air-water interface, by exchanging the subphase under the film to remove unspread enzyme molecules, was developed, and its effectiveness was studied using surface-spread mitochondrial malate dehydrogenase. Mitochondrial malate dehydrogenase formed stable films which gave reproducible pi-A curves. The enzyme activity was measured by the oxidation rate of reduced nicotinamide adenine dinucleotide (NADH) in the presence of the substrate oxalacetic acid. Oxalacetic acid and NADH were injected into the subphase. The catalytic activity of the enzyme was dependent on the surface pressure of the film. The maximum catalytic activity was observed at a surface pressure of 4.4 dynes/cm. The activity was higher at intermediate surface pressures than at very low or very high surface pressures. A high bulk catalytic activity was observed in the unstable region, i.e., at a high degree of compression, of the film. The catalytic activity of the surface-spread enzyme was only a fraction of an equivalent amount of enzyme in solution.  相似文献   

7.
Lactate dehydrogenase (LDH), malate dehydrogenase, and alpha-esterase were studied electrophoretically in a total of 99 semen samples obtained from normal, vasectomized, oligospermic, and infertile males. The enzymatic patterns were compared with total sperm count and percentage sperm motility. Lactate dehydrogenase X was absent in semen samples from oligospermic as well as vasectomized males. An extra LDH band (between the second and third LDH bands) was detectable in samples which had a low sperm count but higher motility (80 to 90%). This extra band was absent in samples with higher sperm count regardless of the level of percentage motility, suggesting that the extra band possibly may be related to motility factors of low sperm count but not normal sperm count. The fastest moving alpha-esterase bands were absent in samples from oligospermic or vasectomized males. These bands were also absent in samples from infertile patients having a very low sperm count. It is not clear whether the fast-moving esterase bands are related to sperm count or possible differences in hormonal levels of individuals with low or zero sperm count samples. The patterns of malate dehydrogenase did not differ in individuals with zero, low, or normal sperm count.  相似文献   

8.
According to the amyloid hypothesis for the pathogenesis of Alzheimer disease, beta-amyloid peptide (betaA) directly affects neurons, leading to neurodegeneration and tau phosphorylation. In rat hippocampal culture, betaA exposure activates tau protein kinase I/glycogen synthase kinase 3beta (TPKI/GSK-3beta), which phosphorylates tau protein into Alzheimer disease-like forms, resulting in neuronal death. To elucidate the mechanism of betaA-induced neuronal death, we searched for substrates of TPKI/GSK-3beta in a two-hybrid system and identified pyruvate dehydrogenase (PDH), which converts pyruvate to acetyl-CoA in mitochondria. PDH was phosphorylated and inactivated by TPKI/GSK-3beta in vitro and also in betaA-treated hippocampal cultures, resulting in mitochondrial dysfunction, which would contribute to neuronal death. In cholinergic neurons, betaA impaired acetylcholine synthesis without affecting choline acetyltransferase activity, which suggests that PDH is inactivated by betaA-induced TPKI/GSK-3beta. Thus, TPKI/GSK-3beta regulates PDH and participates in energy metabolism and acetylcholine synthesis. These results suggest that TPKI/GSK-3beta plays a key role in the pathogenesis of Alzheimer disease.  相似文献   

9.
10.
Methyl formate synthase, which catalyzes methyl formate formation during the growth of methylotrophic yeasts, was purified to homogeneity from methanol-grown Candida boidinii and Pichia methanolica cells. Both purified enzymes were tetrameric, with identical subunits with molecular masses of 42 to 45 kDa, containing two atoms of zinc per subunit. The enzymes catalyze NAD(+)-linked dehydrogenation of the hydroxyl group of the hemiacetal adduct [CH2(OH)OCH3] of methanol and formaldehyde, leading to the formation of a stoichiometric amount of methyl formate. Although neither methanol nor formaldehyde alone acted as a substrate for the enzymes, they showed simple NAD(+)-linked alcohol dehydrogenase activity toward aliphatic long-chain alcohols such as octanol, showing that they belong to the class III alcohol dehydrogenase family. The methyl formate synthase activity of C. boidinii was found in the mitochondrial fraction in subcellular fractionation experiments, suggesting that methyl formate synthase is a homolog of Saccharomyces cerevisiae Adh3p. These results indicate that formaldehyde could be oxidized in a glutathione-independent manner by methyl formate synthase in methylotrophic yeasts. The significance of methyl formate synthase in both formaldehyde resistance and energy metabolism is also discussed.  相似文献   

11.
Basic fibroblast growth factor (FGF-2) is a potent mitogen which is required for normal development, particularly the development of the skeletal system, where the inhibition of FGF binding to its receptor results in various skeletal malformations. The present study employed a newly engineered line of FGF-2 transgenic mice to determine the effects of overexpressing FGF-2 on limb bone ontogeny. We collected radiographic and weight data longitudinally and obtained the length, proximal, distal, and minimum diaphyseal widths of the humerus, femur, and tibia. Because growth is nonlinear with respect to time, we used the Gompertz mathematical model to obtain parameters describing rate and timing for each individual for each measurement. Differences in the parameters due to genotype and sex were subsequently tested with ANOVA. Transgenic animals exhibited consistently shorter limb bones which were generally wider at the epiphyses than those of controls. Parameters of early growth, including initial size and proportional rate of growth, appeared to be most directly responsible for significant differences in final size; however, exponential decay of growth was also a marginally significant factor. There were no differences between the genotypes in body weight, indicating that the shape anomalies observed in transgenic mice were a direct result of the action of FGF-2 rather than a general runting phenomenon.  相似文献   

12.
When overexpressed in Saccharomyces cerevisiae, beta-galactosidase fusion proteins directed to the mitochondria are toxic, preventing growth of yeast cells on non-fermentable carbon sources (Emr, S. D., Vassarotti, A., Garrett, J., Geller, B. L., Takeda, M., and Douglas, M. G. (1986) J. Cell Biol. 102, 523-533). We show that such fusion proteins interfere with the assembly of respiratory complexes in the mitochondrial inner membrane, without blocking protein translocation. The gene YME1, encoding an ATP-dependent metalloprotease of the mitochondrial inner membrane, acts as a suppressor of this defect; a 3-fold overexpression of Yme1p is sufficient to restore respiratory complex assembly and mitochondrial function. Detailed knowledge of the topology and effect of the toxic beta-galactosidase fusion proteins will permit the identification and characterization of components that control protein sorting and protein assembly within the mitochondrial inner membrane.  相似文献   

13.
In continuation of previous investigations, the authors studied the behaviour of the activities of certain enzymes (citrate synthase, adenosine triphosphate citrate lyase, fatty acid synthase and glucose-6-phosphate dehydrogenase) in the livers of growing rats on diets differing in fat content. A high-fat diet resulted in a reduction of the activities of fatty acid synthase, glucose-6-phosphate dehydrogenase and adenosine triphosphate citrate lyase, whereas the activity of citrate synthase increased, which is interpreted in the sense of an acceleration of the introduction of acetyl residues into the citrate cycle for the purpose of oxidative final degradation, and as a removal of acetyl CoA for the purpose of fatty acid synthesis.  相似文献   

14.
The chloroplastic NADP malate dehydrogenase is completely inactive in its oxidized form and is activated by thiol/disulfide interchange with reduced thioredoxin. To elucidate the molecular mechanism underlying the absence of activity of the oxidized enzyme, we used site-directed mutagenesis to delete or substitute the two most C-terminal residues (C-terminal Val, penultimate Glu, both bearing negative charges). We also combined these mutations with the elimination of one or both of the possible regulatory N-terminal disulfides by mutating the corresponding cysteines. Proteins mutated at the C-terminal residues had no activity in the oxidized form but were partially inhibited when pretreated with the histidine-specific reagent diethyl pyrocarbonate before activation, showing that the active site was partially accessible. Proteins missing both N-terminal regulatory disulfides reached almost full activity without activation upon elimination of the negative charge of the penultimate Glu. These results strongly support a model where the C-terminal extension is docked into the active site through a negatively charged residue, acting as an internal inhibitor. They show also that the reduction of both N-terminal bridges is necessary to release the C-terminal extension from the active site. This is the first report for a thiol-activated enzyme of a regulatory mechanism resembling the well known intrasteric inhibition of protein kinases.  相似文献   

15.
16.
17.
18.
PURPOSE: To evaluate the influence of prognostic factors in postoperative radiotherapy of NSCLC with special emphasis on the time interval between surgery and start of radiotherapy. METHODS AND MATERIALS: Between January 1976 and December 1993, 340 cases were treated and retrospectively analyzed meeting the following criteria: complete follow-up; complete staging information including pathological confirmation of resection status; maximum interval between surgery (SX) and radiotherapy (RT) of 12 weeks (median 36 days, range 18 to 84 days); minimum dose of 50 Gy (R0), and maximum dose of 70 Gy (R2). Two hundred thirty patients (68%) had N2 disease; 228 patients were completely resected (R0). One hundred six (31%) had adenocarcinoma, 172 (51%) squamous cell carcinoma. RESULTS: In univariate analysis, Karnofsky performance status (90+ >60-80%; p = 0.019 log rank), resection status stratified for nodal disease (R+ 相似文献   

19.
Changes in [Ca2+]i are an essential factor regulating egg activation. Matured ascidian eggs are arrested at metaphase I, and two series of [Ca2+]i transients have been observed after fertilization: Ca2+ waves just after fertilization (Series I) and [Ca2+]i oscillation between the first and second polar body extrusion (Series II). We investigated mechanisms involved in the elevation of [Ca2+]i and the role of the [Ca2+]i transients during egg activation in Ciona savignyi. The monoclonal antibody 18A10 against IP3 receptor type 1, which inhibits IP3-induced Ca2+ release in hamster and mouse eggs, did not show substantial inhibitory effects on series I or egg deformation, whereas Series II and the first cell division were inhibited by the antibody. Ruthenium red, an inhibitor of ryanodine receptor-mediated Ca2+ release, had no apparent effect of [Ca2+]i transients and other events related to the egg activation. Microinjection of IP3 into unfertilized eggs induced [Ca2+]i transients similar to those seen in Series I, whereas injection of cyclic ADP ribose, an agonist of ryanodine receptors, rarely induced [Ca2+]i transient. Adenophostin B, a potent nonmetabolizable agonist of IP3 receptors, induced [Ca2+]i oscillations which continued after first polar body extrusion, without separation to two series, and led to extrusion of first and second polar bodies. These results suggest that Series II is driven by the mouse type 1-like IP3 receptor while Series I seems to be mediated by another type of IP3 receptor. Injection of IP3 only induced the first polar body extrusion and the egg was arrested at metaphase II even when a higher amount of IP3 was injected. On the other hand, reinjection of IP3 after the first polar body extrusion led to emission of the second polar body. Thus, Series I and II of [Ca2+]i transients are likely to be required for metaphase-anaphase transition in meiosis.  相似文献   

20.
Monoclonal antibodies were raised against prostacyclin synthases purified from bovine and porcine aortae, respectively. Two monoclonal antibodies, RS1 and RS2, were purified and characterized. As shown by enzyme activity precipitation and Western blot analysis, in solubilized bovine and porcine aortae microsomes the monoclonal antibodies reacted only with prostacyclin synthase. The monoclonal antibody RS1 cross-reacts with partially purified prostacyclin synthase from human umbilical veins in an ELISA-based assay. None of the antibodies inhibited the enzyme activity. By combination of the monoclonal antibody RS2 with a polyclonal antibody we established an enzyme-linked immunosorbent assay (ELISA) for quantitation of bovine prostacyclin synthase. ELISA data were confirmed by Western blot analysis. Among different bovine tissues, aortae with 1665 +/- 200 ng/mg microsomal protein showed the highest content of PGIS. Significant lower concentrations were observed in tongue, lung, kidney and thymus ranging from 49 +/- 13.4 to 2.7 +/- 0.9 ng/mg protein. The monoclonal antibody RS1 binds to endothelial cells and vascular smooth muscle cells in human liver tissue.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号