首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 140 毫秒
1.
以马来酸酐接枝氢化苯乙烯-丁二烯-苯乙烯嵌段共聚物(SEBS-g-MAH)作为聚氯乙烯(PVC)/热塑性聚氨酯弹性体(PUR-T)共混体系的增容剂,对不同配比的PVC/PUR-T/SEBS-g-MAH共混体系的物理力学性能进行了研究。结果表明,SEBS-g-MAH对PVC/PUR-T共混体系起到了明显的增容作用,当SEBS-g-MAH用量为6份时,PVC/PUR-T/SEBS-g-MAH共混物具有较好的力学性能。  相似文献   

2.
以马来酸酐接枝苯乙烯-乙烯-丁二烯-苯乙烯嵌段共聚物(SEBS-g-MAH)作为增容剂,通过熔融共混制备了苯乙烯热塑性弹性体(HYBRAR7311)/丙烯酸酯热塑性弹性体(LA4285)共混物。对不同配比的HYBRAR7311/LA4285/SEBS-g-MAH三元共混体系的性能进行了研究。结果表明,SEBS-g-MAH对HYBRAR7311/LA4285共混体系起到了明显的增容作用,当SEBS-g-MAH用量为1.5%时,HYBRAR7311/LA4285/SEBS-g-MAH共混物的拉伸强度和断裂伸长率分别提高了28.5%、13.4%;随SEBS-g-MAH用量的增加,共混物的熔体流动速率降低,亲水性增强。  相似文献   

3.
SEBS—g-MAH增韧聚苯硫醚性能研究   总被引:1,自引:0,他引:1  
采用熔融挤出法制备了聚苯硫醚(PPS)与马来酸酐接枝苯乙烯-乙烯-丁二烯-苯乙烯嵌段共聚弹性体(SEBS-g-MAH)的共混物,并考察了共混物的热行为、力学性能、相形态及增韧机理.结果表明,两组分的玻璃化温度有相互靠近的趋势,显示PPS和SEBS-g-MAH部分相容;随着SEBS-g-MAH用量增加,共混物的韧性得到很好的提高,当SEBS-g-MAH的质量分数为30%时,其冲击强度达到7.5 kJ/m2.PPS/SEBS-g-MAH/Kevlar纤维共混体系中,SEBS-g-MAH既可以作为增韧剂,又可以作为两相相容剂来提高PPS基体和Kevlar纤维的界面黏结能力,使共混物达到增强增韧的效果.  相似文献   

4.
以苯乙烯-乙烯-丁烯-苯乙烯嵌段共聚物接枝马来酸酐(SEBS-g-MAH)为相容剂制备了回收高冲击强度聚苯乙烯(HIPS)和丙烯腈-丁二烯-苯乙烯共聚物(ABS)的共混物。利用熔体质量流动速率试验机和毛细管流变仪分析研究了该HIPS/ABS/SEBS-g-MAH共混物的流变行为。结果表明:在测试温度、应力条件下,该HIPS/ABS/SEBS-g-MAH共混物均为假塑性流体;随着相容剂SEBS-g-MAH用量的增加,共混物的非牛顿指数和黏流活化能均先增大后减小,且在相容剂SEBS-g-MAH用量为15 phr时达到最大值。  相似文献   

5.
PA6/PP/SEBS-g-MAH共混物的相容性研究   总被引:2,自引:1,他引:2  
采用马来酸酐接枝(氢化苯乙烯/丁二烯/苯乙烯)共聚物(SEBS-g-MAH)作为增容剂,研究了增容剂用量对尼龙6/聚丙烯(PA6/PP)共混体系相态结构、力学性能的影响,以及在相同增容剂用量下不同PA6、PP配比对体系相形态的影响。结果表明,SEBS-g-MAH中的酸酐基团能与PA6末端的氨基发生化学反应,在PA6和PP的内表面形成PA6-SEBS接枝共聚物,明显改善了两相的界面相容性,并使共混物的力学性能得到显著提高。共混物冲击断面形貌的分析表明,共混物发生了明显的脆韧转变。  相似文献   

6.
研究了废纸浆、马来酸酐接枝苯乙烯-乙烯/丁烯-苯乙烯(SEBS-g-MAH)用量以及发泡对废纸浆/丙烯腈-丁二烯-苯乙烯(ABS)复合材料的力学性能和吸水率的影响;通过扫描电镜SEM分析了SEBS-g-MAH对未发泡和发泡废纸浆/ABS复合材料的增容效果.结果表明:废纸浆用量为30份和SEBS-g-MAH用量为20份时,未发泡和发泡复合材料的拉伸性能和缺口冲击强度都达到最佳;吸水率随纸浆用量的增加而增加,SEBS-g-MAH用量为20份时,未发泡和发泡材料吸水率都达到最低.发泡后的复合材料的拉伸强度降低,冲击性能和吸水率升高.SEBS-g-MAH能有效地改善ABS和纸浆的界面相容性.  相似文献   

7.
以马来酸酐(MAH)接枝苯乙烯-(乙烯-丁烯)-苯乙烯共聚物SEBS(SEBS-g-MAH)为增韧剂,有机蒙脱土(OMMT)为增强填料,甲基丙烯酸缩水甘油酯(GMA)为相容剂,采用熔融挤出方法制备了PA6/SEBS-gMAH/OMMT复合材料.通过力学、毛细管流变性能测试,考察了SEBS-g-MAH、OMMT和GMA对共混物的力学性能及流变性能的影响.结果表明,共混材料能在保持基本强度及模量稳定的情况下提高冲击强度,获得良好的综合力学性能.PA6及其共混物均为假塑性流体,在230~260℃共混材料的非牛顿指数为0.603~0.931,表观黏度随着剪切应力的增加而降低;加入SEBS-g-MAH、OMMT和/或GMA使得PA6的表观黏度增大,黏流活化能降低;在恒定剪切应力下PA6共混物可在较宽的温度范围内成型加工.  相似文献   

8.
利用熔融接枝法制备了马来酸酐接枝苯乙烯-乙烯-丁烯-苯乙烯嵌段共聚物(SEBS-g-MAH)、马来酸酐接枝乙烯-辛烯共聚物(POE-g-MAH),研究了两种接枝共聚物的接枝率及其用量对线型低密度聚乙烯(LLDPE)共混体系黏结性能的影响,并探讨了接枝物的作用机理。结果表明:随着接枝共聚物接枝率和用量的增加,LLDPE/SEBS-g-MAH共混物的黏结性能呈上升趋势;在LLDPE/SEBS-g-MAH共混物中加入POE-g-MAH,可在保证共混物黏结性能的基础上降低SEBS-g-MAH用量,当吸光比为0.1378的POE-g-MAH用量为15%时,体系的拉伸剪切强度达到5.52 MPa;当接枝物用量过高时,接枝物富集区与贫乏区之间的分子链缠结作用减弱导,致黏结性能下降。  相似文献   

9.
利用双螺杆挤出机制备聚碳酸酯(PC)/聚对苯二甲酸丁二醇酯(PBT)/马来酸酐接枝氢化苯乙烯-丁二烯-苯乙烯共聚物(SEBS-g-MAH)的共混物.通过扫描电子显微镜(SEM)、平板流变仪研究了SEBS-g-MAH对PC/PBT共混物的机械性能、断面形态结构、动态力学行为的影响.结果表明:SEBS-g-MAH提高了PC/PBT共混物的相容性,随着SEBS-g-MAH用量的增加,共混物的缺口冲击强度和断裂伸长率上升,拉伸强度和弯曲强度下降.当SEBS-g-MAH质量分数为5%时共混物的综合性能最佳,同时,SEBS-g-MAH的加入.并未对PC/PBT共混物的成型加工性能产生不良影响.  相似文献   

10.
将尼龙(PA)1010盐和PA66盐按照质量比为9∶1的比例制备了PA1010/66共聚物。选择(苯乙烯/乙烯-丁烯/苯乙烯)共聚物接枝马来酸酐(SEBS-g-MAH)和两种小分子增塑剂邻苯二甲酸二异癸酯、N-丁基苯磺酰胺(D IDP、BSBA),采用共混挤出法制备了(PA1010/66)/SEBS-g-MAH/D IDP/BSBA共混物,并对其力学性能进行了研究。结果表明,随着SEBS-g-MAH含量的增加,共混物的冲击强度明显提高。当SEBS-g-MAH质量分数为15%时,其缺口冲击强度为72.7 kJ/m2,是PA1010/66共聚物的16倍左右;拉伸强度保持率是PA1010/66共聚物的83%左右。通过SEM研究发现,SEBS-g-MAH对PA1010/66共聚物的增韧机理为银纹剪切带增韧机理。  相似文献   

11.
研究了氯化聚氯乙烯(CPVC)、丙烯腈-丁二烯-苯乙烯共聚物(ABS)和氯化聚乙烯(CPE)三元共混体系的组成与性能之间的关系。结果表明,ABS树脂可以有效降低CPVC/ABS/CPE三元共混体系的平衡扭矩,缩短三元共混体系的塑化时间,改善其流动性;当CPE含量固定、共混体系中CPVC与ABS的质量比为7:3时,共混体系的拉伸强度和缺口冲击强度达到最佳,共混体系具有较好的综合力学性能;随着CPE含量的增加,三元共混体系的缺口冲击强度显著提高,CPE对三元共混体系具有优良的增韧作用,用量以15份为宜。  相似文献   

12.
Styrene–acrylonitrile copolymer (SAN)/acrylonitrile–styrene–acrylate terpolymer (ASA) blends (75/25, w/w) were toughened by blending with chlorinated polyethylene (CPE) and acrylic resin (ACR) at three different temperatures (?30, 0, and 25 °C). When the testing temperature was 0 and 25 °C, CPE played a key role in improving the impact strength of blends instead of ACR. However, an obvious synergistic toughening effect of CPE and ACR was observed at ?30 °C: when both 10 phr CPE and 15 phr ACR were added, the impact strength of the blends reached a peak at 7.50 kJ/m2, which was about two to three times higher than when 25 phr CPE or 25 phr ACR was introduced into the blends individually. Scanning electron microscopy, dynamic mechanical analysis, and surface energy measurements were used to investigate the toughening mechanism. Furthermore, other mechanical properties and the heat distortion temperatures were evaluated. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43958.  相似文献   

13.
刘洋  付丽  邓涛  辛振祥 《弹性体》2009,19(6):43-45
采用三元尼龙改性氯化聚乙烯(CPE),研究了尼龙用量对CPE共混胶加工性能和物理机械性能、稳定性、耐油性能的影响。结果表明:CPE和尼龙具有较好的相容性,随着尼龙用量的增加,CPE共混胶的强度以及模量大大提高,耐油及耐热性能亦明显改善,当尼龙用量为40份时,共混物获得较为优异的综合性能;此外,尼龙与CPE共混后可提高共混胶剪切粘度,改善其加工性能,扩大了其应用范围。  相似文献   

14.
黄兆阁  马勇 《弹性体》2010,20(5):57-59
采用三元乙丙橡胶(EPDM)和氯化聚乙烯(CPE)作为耐高温输送带覆盖胶,通过不同配方设计和硫化工艺,着重研究了覆盖胶耐热性能。探讨了过氧化二异丙苯(DCP)和烯丙基异氰脲酸酯(TAIC)及硫磺(S)配比对共混物的力学性能和耐热老化性能的影响。结果表明:EPDM/CPE的共混比为60/40时,DCP用量为4 phr、TAIC用量为1 phr、S用量为0.2 phr时,胶料有良好的耐热老化性能和耐臭氧老化性能。  相似文献   

15.
在高分子共混增容理论与高分子共混物多相体系流变学的指导下,利用合成的CPE与AN,St的三元接枝共聚物对CPE/AS共混体系进行改性。扫描电镜(SEM)测试结果表明三元接枝共聚物加入CPE/AS共混体系后能有效改善体系相容性。增容作用明显。流变性能测试表明,一定量的CPE三元接枝共聚物加入CPE/AS共混体系后,能有效降低体系的熔体粘度,克服了增容与共混熔体粘度增加的矛盾。制备出具有良好力学与加工性能的CPE/CPE三元接枝共聚物/AS共混材料。讨论了共混体系的增容机理与加工流动性改善的原因。研究表明,共混材料中CPE,AS,CPE三元接枝共聚物的含量分别为30,60,10(质量份)时,其综合性能优良。  相似文献   

16.
Styrene‐acrylonitrile copolymer (SAN)/acrylonitrile‐styrene‐acrylate terpolymer (ASA) blends (75/25, wt/wt) was toughened by blending with impact modifiers including chlorinated polyethylene (CPE), hydrogenated nitrile butadiene rubber (HNBR), and butadiene rubber (BR) and the impact property was tested at four temperatures (–30, ?15, 0, and 25 °C). The combination of CPE and HNBR was imported to toughen the SAN/ASA blends, indicating that CPE and HNBR had similar toughening effect at room temperature but HNBR exhibited a better performance at low temperature. When a little HNBR was substituted by BR, the impact strength improved dramatically with the total content of impact modifiers keeping at 30 phr. After 15 phr CPE, 10 phr HNBR and 5 phr BR were employed into blends together, the impact strength reached to a peak of 14 kJ/m2 at ?30 °C while the impact strength of the blends individually toughened by 30 phr CPE or 30 phr HNBR was 5 or 12 kJ/m2, respectively. The toughening mechanism showed that the low glass‐transition temperature (–108 °C) of BR and the compatibilization between BR and matrix accounted for the improvement of toughness. Simultaneously, scanning electron microscopy, dynamic mechanical analysis, flexural and tensile properties, heat distortion temperature, and Fourier transform infrared spectroscopy were measured. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134 , 45364.  相似文献   

17.
固相法氯化聚乙烯与聚氯乙烯共混物的形态与性能   总被引:4,自引:0,他引:4  
研究了聚氯乙烯(PVC)与固相法氯化聚乙烯(CPE)共混物的应力-应变行为和冲击强度对CPE用量和氯含量的依赖关系,考察了共混物形态与性能的关系。动态力学性能和透射电子显微镜的研究结果表明,PVC/CPE为部分相容体系,两相间存在着一定的相互作用,当CPE氯含量为36%~42%,用量为7~15份时,CPE在PVC/CPE共混物中形成比较完整的网络结构、共混物具有更好的抗冲击性能。Brabender流变仪研究表明,CPE能促进PVC的塑化,共混物的加工性优于纯PVC。  相似文献   

18.
制备了聚氯乙烯/氯化聚乙烯(PVC/CPE)共混物,研究了改性剂CHEMIGUMP83(简称P83)和增塑剂邻苯二甲酸二辛酯(DOP)对共混物硬度、拉伸性能和耐磨性能的影响。结果表明:适量的P83和DOP并用,可以降低共混物的硬度,改善共混物的拉伸性能;P83可以有效减缓DOP的加入导致的共混物耐磨性能下降的趋势;当DOP用量在25~30phr、P83用量在10~15phr时,PVC/CPE共混物具有较好的物理力学性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号