首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 343 毫秒
1.
以回收聚对苯二甲酸乙二醇(酯rPET)为基体材料,丙烯腈-丁二烯-苯乙烯共聚(物ABS)为增强材料,甲基丙烯酸缩水甘油酯接枝聚苯乙烯(PS-g-GMA)为增容剂,制备了rPET/ABS共混物。采用SEM、DSC等方法对共混物的形态结构、结晶性能和力学性能进行了表征。结果表明:与纯rPET相比,ABS增韧后的rPET缺口冲击强度和断裂伸长率分别提高了54.0%和47.2%,弯曲强度和拉伸强度略有下降,熔融温度下降了1.27℃,结晶温度升高了31.22℃,结晶速度明显加快;PS-g-GMA的加入改善了rPET/ABS共混物的两相界面结合力,细化了两相结构;与纯rPET相比,含1%PS-g-GMA的rPET/PS-g-GMA/ABS共混物的缺口冲击强度提高了72.5%断,裂伸长率提高了71.7%。  相似文献   

2.
以回收聚对苯二甲酸乙二醇酯(rPET)为基体材料,茂金属线型低密度聚乙烯(mLLDPE)为共混材料,马来酸酐接枝线型低密度聚乙烯(LLDPE-g-MAH)、丙烯酸酯复合接枝苯乙烯-丁二烯弹性体为相容剂,制备了rPET/mLLDPE共混物。采用DSC和SEM分析了相容剂对共混物结晶性能及断面结构的影响,并检测了共混物的力学性能。结果表明:mLLDPE的加入使得rPET/mLLDPE共混物的熔体结晶峰向右移动,结晶温度提高了29.03℃;相容剂的加入使得共混物中rPET的玻璃化转变温度向低温方向移动,rPET与mLLDPE相容性增强;含3%LLDPE-g-MAH的rPET/mLLDPE共混物中,MAH基团与rPET中的羟基发生接枝反应,相界面模糊,rPET与mLLDPE界面黏结力增强,与纯rPET相比,其断裂伸长率提高了93.73%,缺口冲击强度提高了54.6%。  相似文献   

3.
以回收聚对苯二甲酸乙二醇(酯r-PET)为基体材料,乙烯-辛烯共聚(物POE)为增韧材料,乙烯-丙烯酸共聚物(EAA)为相容剂,制备了r-PET/POE/EAA共混材料。用DSC、SEM分析了POE及EAA对r-PET结晶性能、断面结构的影响,并测试了共混材料的力学性能。结果表明:加入12%POE后,r-PET/POE共混材料的熔融温度降低了1.76℃,结晶度降低了16.49%,断裂伸长率及缺口冲击强度明显提高,弯曲强度和拉伸强度略有下降;在r-PET/POE共混材料中加入1.5%EAA后,POE球状粒子嵌入r-PET基体中,二者相容性提高,结晶速率加快;与纯r-PET相比,r-PET/POE/EAA共混材料的断裂伸长率和缺口冲击强度分别提高了698.01%和227.45%柔,韧性也大幅度提高。  相似文献   

4.
利用十八醇和环氧氯丙烷反应合成了十八烷基缩水甘油醚(OGE),并将其作为熔融共混方法中的增容剂,制备了尼龙6(PA6)/高密度聚乙烯(HDPE)共混材料。研究了OGE用量对共混物的热性能、结晶行为、形态结构、力学性能及吸水性的影响。结果表明,OGE促进了HDPE在PA6基体中的分散,在保持共混材料吸水率的同时,有效改善了共混物的力学性能,与未加入增容剂的PA6/HDPE共混物相比,OGE含量为2.9%(m/m)时,共混材料的缺口冲击强度、拉伸模量、断裂伸长率、弯曲强度分别提高了12%、33%、95%、6%,拉伸强度基本保持不变,而弯曲模量下降了8%。  相似文献   

5.
无卤阻燃PP/APP/PTP/PER复合材料的力学性能   总被引:1,自引:0,他引:1  
采用多聚磷酸铵/含磷三嗪环聚合物/季戊四醇(APP/PTP/PER)体系制备了阻燃聚丙烯(PP)材料,考察了PTP及其阻燃系统的用量对阻燃PP力学性能的影响。结果表明,APP/PER使PP的缺口冲击强度和弯曲模量提高,拉伸强度有所降低,断裂伸长率下降。PTP对PP的缺口冲击强度和弯曲模量影响不大,拉伸强度有所降低,断裂伸长率下降。当加入29%APP/PER/PTP时,缺口冲击强度和弯曲模量分别比纯PP提高了62.0%和14.3%,拉伸强度和断裂伸长率分别下降了13.9%和91.0%。  相似文献   

6.
《塑料》2019,(6)
以微晶纤维素(MCC)为填料、马来酸酐接枝聚丙烯(PP-g-MAH)作界面相容剂和无规共聚聚丙烯(r PP)为基体,通过熔融共混法制备MCC/PP-g-MAH/r PP复合材料。研究了PP-g-MAH对MCC/PP-g-MAH/r PP力学性能、界面形貌、热稳定性和结晶动力学的影响。结果表明,PP-g-MAH提高了MCC和r PP的界面相容性。随着PP-g-MAH含量增加,MCC/PP-g-MAH/r PP的拉伸强度、拉伸模量均呈现先上升后下降的趋势,弯曲强度、弯曲模量呈现上升趋势。当PP-g-MAH含量为5%时,MCC/PP-g-MAH/r PP的力学性能最佳,拉伸强度为28. 46 MPa、弯曲强度为44. 22 MPa、冲击强度为0. 47 k J/m2分别比MCC/r PP拉伸强度(17. 80 MPa)、弯曲强度(28. 80 MPa)、冲击强度(0. 38 k J/m2)提升了60. 1%、53. 5%、23. 7%,r PP热分解温度提高了17℃而结晶温度下降。DMA结果表明,PP-g-MAH对MCC/PP-gMAH/r PP的玻璃化转变温度影响不明显,但是提高了储能模量和刚性。  相似文献   

7.
以马来酸酐接枝线性低密度聚乙烯(MAH-g-LLDPE)为相容剂,回收聚对苯二甲酸乙二醇酯(rPET)为基体材料,茂金属线性低密度聚乙烯(mLLDPE)为增韧材料,制备rPET/mLLDPE塑料合金材料。采用DSC、SEM分析MAH-g-LLDPE对rPET/mLLDPE结晶性能及断面相结构的影响,测试了rPET/mLLDPE材料的流变性能及力学性能。结果表明,mLLDPE的加入使得rPET/mLLDPE熔体结晶峰向右移动,结晶温度提高;MAH-g-LLDPE的加入,共混体系中rPET的玻璃化转变温度(tg)朝低温方向移动,rPET与mLLDPE相容性增强,相界面模糊,界面黏结力强,熔融塑化过程扭矩值增大。含5%MAH-g-LLDPE的rPET/mLLDPE材料,与纯rPET相比,其结晶温度(tc)提高24.73℃,断裂伸长率提高113.6%,缺口冲击强度提高66.48%,柔韧性和抗冲击性能较大幅度提高。  相似文献   

8.
以自制的甲基丙烯酸缩水甘油酯/苯乙烯熔融接枝乙烯-辛烯嵌段共聚物(OBC-g-(GMA-co-St))为相容剂,回收聚对苯二甲酸乙二醇酯(r-PET)为基体材料,乙烯-辛烯嵌段共聚物(OBC)为增韧材料,通过高速混合、双螺杆挤出、注塑成型等工艺制备了r-PET/OBC/OBC-g-(GMA-co-St)共混材料,并利用扫描电子显微镜(SEM)、差示扫描量热仪(DSC)、动态热机械分析仪(DMA)测试并分析了OBC-g-(GMA-co-St)对r-PET/OBC共混材料界面性能、结晶性能、储能模量等的影响,另外还通过拉伸和冲击试验测试了r-PET/OBC/OBC-g-(GMA-co-St)共混材料的力学性能。结果表明:随着OBC-g-(GMA-co-St)用量的增加,r-PET/OBC/OBC-g-(GMA-co-St)共混材料的拉伸强度呈先增大后减小趋势,断裂伸长率大幅度上升然后趋于平缓,缺口冲击强度随之增大,弯曲强度则有所降低。其中,在OBC-g-(GMA-co-St)用量为1.5%的r-PET/OBC/OBC-g-(GMA-co-St)共混材料中,OBC球状粒子嵌入了r-PET基体,二者界面黏结力增强。与纯r-PET相比,该共混材料的熔融温度和结晶温度升高,过冷度和结晶度降低,玻璃化转变温度向低温方向移动,储能模量略有降低,另外,其断裂伸长率和缺口冲击强度分别提高了260.97%和119.64%。  相似文献   

9.
采用PP-g-MAH(马来酸酐接枝聚丙烯)作为相容剂,在PP-g-MAH和PP(聚丙烯)的共混物中当相容剂质量分数为5%、10%、15%的条件下,结合微纳层叠挤出技术制备了15组TPV(热塑性硫化胶)。采用普通共混的方法制备了对比的TPV样品。使用万能拉力试验机对所有样品进行了力学性能测试,使用扫描电子显微镜对TPV进行了表征,研究了TPV的力学性能和螺杆转速、温度间的关系。结果表明:随着温度的上升,TPV的拉伸强度和断裂伸长率都得到了提升,在PP-g-MAH质量分数为15%、温度为200℃、螺杆转速为250 r/min时,制备的TPV力学性能表现最好,拉伸强度和断裂伸长率分别为5.39 MPa、287.31%,断裂伸长率比同样条件下采用普通共混方法制备的热塑性弹性体提高15.58%。  相似文献   

10.
玻纤增强聚丙烯复合材料性能研究   总被引:7,自引:1,他引:6  
研究了玻纤(GF)、SEBS和聚丙烯接枝马来酸酐(PP-g-MAH)用量对GF增强聚丙烯复合材料性能的影响,以及PP/GF(65/35)、PP-g-MAH/PP/GF(15/65/35)的微观形态。结果表明:随着GF用量的增加,复合材料的拉伸强度、弯曲强度和弯曲模量增加,断裂伸长率降低,冲击强度先减小后增大,PP/GF复合材料断面呈脆性断裂;在PP/GF中添加增韧剂SEBS可以提高复合材料的冲击强度,但拉伸强度、断裂伸长率、弯曲强度和弯曲模量均减小;在PP/GF中添加增容剂PP-g-MAH,可使其拉伸强度、断裂伸长率、弯曲强度、弯曲模量和冲击强度均得到提高,当PP-g-MAH/PP/GF为15/65/35时,复合材料性能优异,材料断面呈韧性断裂。  相似文献   

11.
研究了马来酸酐接枝聚丙烯(PP-g-MAH)含量及玻璃纤维(GF)含量对GF增强聚丙烯(PP)复合材料尺寸稳定性与力学性能的影响。结果表明,加入PP-g-MAH后,复合材料的线性膨胀系数和收缩率下降,结晶度、拉伸强度、弯曲强度和悬臂梁缺口冲击强度提高,但断裂伸长率下降。相比不添加PP-g-MAH的复合材料,当PP-g-MAH质量分数达到6%时,复合材料在流道方向上的线性膨胀系数从29.88μm/(m·℃)降低至24.93μm/(m·℃),在流道方向上的收缩率从0.20%下降至0.18%,拉伸强度、弯曲强度和悬臂梁缺口冲击强度基本达到最大值,分别提高130.18%,96.52%和49.20%;随着GF质量分数的增加,复合材料的线性膨胀系数和收缩率均显著下降,拉伸强度、弯曲强度和悬臂梁缺口冲击强度提高,而断裂伸长率和结晶度下降。相比不添加GF的复合材料,当GF质量分数为40%时,复合材料在流道方向上的线性膨胀系数从101.30μm/(m·℃)降低至18.08μm/(m·℃),在流道方向上的收缩率从1.43%下降至0.08%,结晶度从45.05%下降至23.96%,拉伸强度、弯曲强度和悬臂梁缺口冲击强度分别提高168.87%,306.40%和129.52%。  相似文献   

12.
以回收聚对苯二甲酸乙二酯( rPET)为基体材料,乙烯-辛烯共聚物(POE)为增韧材料,丙烯酸接枝低密度聚乙烯( LDPE-g-AA)为增容剂,制备了rPET/POE/LDPE-g-AA复合材料.分析了POE、LDPE-g-AA对rPET 玻璃化转变温度、断面相结构、结晶性能、力学性能的影响.结果表明,加入POE...  相似文献   

13.
通过在天然橡胶(NR)分子链上接枝甲基丙烯酸甲酯(MMA)和丙烯酸丁酯(BA),制备了三种丙烯酸酯接枝改性NR:NR-g-PMMA,NR-g-PBA和NR-g-(PMMA,PBA)。采用核磁共振氢谱对三种接枝物进行了化学结构鉴定。将接枝改性后的NR和未改性的NR与PLA采用哈克密炼机熔融共混,分别制备了PLA/NR,PLA/NR-gPMMA,PLA/NR-g-PBA和PLA/NR-g-(PMMA,PBA)共混物,研究了接枝改性NR和未改性NR含量对共混物力学性能和热性能的影响。各共混物的拉伸弹性模量和拉伸强度均随接枝改性NR和未改性NR含量的增加而降低,断裂伸长率和缺口冲击强度随接枝改性NR和未改性NR含量的增加而提高。其中,PLA/NR-g-PBA共混物的断裂伸长率和缺口冲击强度比其它共混物提高的幅度大,当NR-g-PBA的质量分数为5%时,PLA/NR-g-PBA共混物的断裂伸长率达到78%,缺口冲击强度为5.2 k J/m2,而纯PLA的断裂伸长率仅为7.7%,缺口冲击强度为2.5 k J/m2,说明NR接枝分子柔顺性较高的BA更有利于促进其与PLA共混物的韧性提高。热分析结果表明,PLA/NR-gPBA共混物的热稳定性相比于纯PLA也有所提高。  相似文献   

14.
张华集  陈鹏  张雯  陈晓  李国标 《塑料科技》2012,40(11):49-52
以聚丙烯(PP)为基体材料,乙烯-辛烯嵌段共聚物(OBC)为增韧材料,三元乙丙橡胶接枝马来酸酐共聚物(EPDM-g-MAH)为相容剂,制备了PP/OBC/EPDM-g-MAH复合材料。用DSC、SEM、转矩流变仪分析了OBC及EPDM-g-MAH对PP结晶性能、断面相结构、流变性能的影响,测试了复合材料的力学性能。结果表明:加入15%OBC,PP/OBC复合材料的熔融温度升高了1.63℃,结晶度降低了5.4%,断裂伸长率及缺口冲击强度明显提高,弯曲强度和拉伸强度有所下降;含4%EPDM-g-MAH的PP/OBC/EPDM-g-MAH复合材料,OBC粒子均匀分散在PP基体中,粒径明显细化,熔融塑化扭矩值降低,结晶速率加快;与纯PP相比,断裂伸长率和缺口冲击强度分别提高了128.57%和107.96%,柔韧性有较大幅度提高。  相似文献   

15.
选用促进剂N–环己基–2–苯并噻唑次磺酰胺(CZ)、四甲基秋兰姆(TMTD)和N–叔丁基–2–苯并噻唑次磺酰胺(NZ)作为脱硫再生剂,分别对废旧胶粉进行改性,制备脱硫再生胶粉,然后制备聚丙烯(PP)/马来酸酐接枝PP(PP-g-MAH)/脱硫胶粉共混物,研究共混物力学性能、流动性能、断面形貌、流变性能和热性能的影响。结果表明,添加促进剂TMTD的共混物力学性能和流动性能最好,拉伸强度为12.15 MPa,断裂伸长率为22.17%,缺口冲击强度为17.11 kJ/m2,熔体流动速率为2.867 g/(10 min);随着角频率增加,共混物的复数黏度减小,储能模量增大,当角频率相同时,添加促进剂TMTD的共混物的复数黏度最小,储能模量最大;添加促进剂后共混物两相间的相容性较好,提高了界面粘接力,以添加促进剂TMTD的效果最好。添加促进剂后共混物的熔点和结晶温度均增大,其中,添加促进剂TMTD的共混物的熔点最高,结晶温度最低。  相似文献   

16.
《国际聚合物材料杂志》2012,61(11):1041-1050
Mechanical properties and morphology of blends of polystyrene and finely powdered (uncrosslinked and crosslinked) nitrile rubber were studied with special reference to the effect of blend ratio. Blends were prepared by melt mixing polystyrene and nitrile rubber in an internal mixer at 180°C in the composition range of 0–20 wt% nitrile rubber. The tensile stress/strain properties and impact strength of the polystyrene/nitrile rubber blends were determined using injection molded test specimens. In comparison to the blends with uncrosslinked nitrile rubber, blends with crosslinked nitrile rubber showed higher tensile strength, elongation at break, Young's modulus, impact strength, flexural strength, and flexural modulus. The enhanced adhesion between the dispersed nitrile rubber phase and the polystyrene matrix results in an increase in mechanical properties. Scanning electron micrographs of the fractured surfaces confirm the enhancement in mechanical properties.  相似文献   

17.
以回收低密度聚乙烯/聚偏氯乙烯(LDPE/PVDC)复合薄膜为基体材料,低密度聚乙烯接枝丙烯酸(LDPE-g-AA)为相容剂,线型低密度聚乙烯(LLDPE)为改性剂,再加入液体钙-锌(Ca-Zn)热稳定剂,通过混合、挤出、注塑工艺制备共混材料。采用刚果红法分析了Ca-Zn稳定剂对复合薄膜中PVDC热稳定性能的影响,并对共混材料的力学性能、阻隔性能和微观形态进行了测试与分析。结果表明:加入1.2份Ca-Zn稳定剂后,共混材料的刚果红试纸起始变色时间和完全变色时间分别延长了67 s和354 s,起始变色温度和完全变色温度分别提高了8℃和11℃;含3%LDPE-g-AA的共混材料,PVDC嵌入LDPE材料中,相容性明显改善,其缺口冲击强度和断裂伸长率提高,吸油率下降;含20%LLDPE及3%LDPE-g-AA的共混材料,其拉伸强度为14.43 MPa、断裂伸长率为389.11%、缺口冲击强度为29.51 kJ/m2、吸油率为14.40%,力学性能和阻隔性能优良。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号