共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper investigates the estimation of domain of attraction for nonlinear port-controlled Hamiltonian (PCH) systems with actuator saturation (AS).Several conditions are established under which an el... 相似文献
2.
In this paper, the design of controller based on neural network is investigated for a class of uncertain systems subject to actuator failures. An adaptive neural controller is designed by utilizing the approximation technique of neural network. The key feature in this work is to remove the requirement on the boundedness of unknown nonlinear functions that is usually encountered in the existing works. Moreover, sufficient conditions are derived such that the closed-loop system is robustly stable. Finally, numerical simulation results are given. 相似文献
3.
In this paper, we present a distributed model predictive control (MPC) algorithm for polytopic uncertain systems subject to actuator saturation. The global system is decomposed into several subsystems. A set invariance condition for polytopic uncertain system with input saturation is identified and a min–max distributed MPC strategy is proposed. The distributed MPC controller is designed by solving a linear matrix inequalities (LMIs) optimization problem. An iterative algorithm is developed for making coordination among subsystems. Case studies are carried out to illustrate the effectiveness of the proposed algorithm. 相似文献
4.
Chengzhi Yuan 《International journal of control》2013,86(1):204-215
In this paper, we study the saturation control problem for linear time-invariant (LTI) systems subject to asymmetric actuator saturation under a switching control framework. The LTI plant with asymmetric saturation is first transformed to an equivalent switched linear model with each subsystem subject to symmetric actuator saturation, based on which a dwell-time switching controller augmented with a controller state reset is then developed by using multiple Lyapunov functions. The controller synthesis conditions are formulated as linear matrix inequalities (LMIs), which can be solved efficiently. Simulation results are also included to illustrate the effectiveness and advantages of the proposed approach. 相似文献
5.
Xinquan Zhang Jun Zhao Georgi M. Dimirovski 《International journal of systems science》2013,44(4):731-740
This article addresses the L 2-gain analysis and control synthesis problem for a class of uncertain switched linear systems with saturating actuators and external disturbances. First, when the controllers are pre-given, an analysis condition on disturbance tolerance is established under which the state trajectory starting from the origin will remain inside a bounded set. By this condition, the problem of estimating disturbance tolerance capability is formulated as a constrained optimisation problem. Then, the restricted L 2-gain property is analysed over the set of tolerable disturbances. An upper bound on the restricted L 2-gain is estimated by solving a constrained optimisation problem. Furthermore, when controller gain matrices are design variables, these optimisation problems can be adapted for controller design. All the results are achieved by utilising the multiple Lyapunov functions method and presented in terms of an LMI optimisation-based approach. A numerical example is given to show the effectiveness of the proposed method. 相似文献
6.
In this study, a novel method is proposed to track a previewable reference signal in the polytopic time-varying system with input saturation. Firstly, an augmented model containing future information is constructed using a new formal variable. This leads to the tracking control problem of polytopic time-varying system with input saturation is transformed into a stability problem of augmented error system. Next, the state and static output feedback preview controls are introduced, and the corresponding controller gains are produced by the proposed conditions. Two examples are presented to validate the effectiveness of the proposed preview controller. 相似文献
7.
Chang Duan 《International journal of control》2013,86(10):1532-1545
This article is devoted to the output-feedback ?∞ control problem for switched linear systems subject to actuator saturation. We consider both continuous- and discrete-time switched systems. Using the minimal switching rule, nonlinear output feedbacks expressed in the form of quasi-linear parameter varying system are designed to satisfy a pre-specified disturbance attenuation level defined by the regional ?2 (?2)-gains over a class of energy-bounded disturbances. The conditions are expressed in bilinear matrix inequalities and can be solved by line search coupled with linear matrix inequalities optimisation. A spherical inverted pendulum example is used to illustrate the effectiveness of the proposed approach. 相似文献
8.
Abdellah Benzaouia Ouassima Akhrif Lahcen Saydy 《International journal of systems science》2013,44(4):397-409
This article presents sufficient conditions for the stabilisation of switching discrete-time linear systems subject to actuator saturations. These conditions are obtained by using successively state and output feedback control laws. The obtained results are formulated in terms of linear matrix inequalities (LMIs). The saturating and non-saturating controllers are synthesised for both cases in this work. Three sets of LMIs are presented for output feedback case. Numerical examples are used to illustrate these techniques by using a linear optimisation problem subject to LMI constraints. 相似文献
9.
Yonghui Liu Yugang Niu Yuanyuan Zou 《International Journal of Control, Automation and Systems》2014,12(1):57-62
This paper considers the problem of sliding mode control for a class of uncertain switched systems subject to sector nonlinearities and dead-zone. In the control systems, each subsystem is not required to share the same input channel, which is usually assumed in the previous works. By employing a weighted sum of the input matrices, a common sliding surface is designed and the corresponding sliding mode dynamics is obtained. A switching signal based on the average dwell time strategy is further proposed to ensure the exponential stability of the sliding mode dynamics. Moreover, it is shown that the reachability of the specified sliding surface can be ensured despite the presence of actuator nonlinearity, parameter uncertainties and external disturbances. Finally, a numerical example is given to demonstrate the effectiveness of the proposed method. 相似文献
10.
This paper addresses the issue of robust reliable stabilization for a class of uncertain nonlinear stochastic systems with both discrete and distributed time-varying delays and possible occurrence of actuator faults. By constructing a new Lyapunov functional and using linear matrix inequality technique, a new set of sufficient conditions is established for the stochastic stability of the uncertain nonlinear stochastic systems. Then, sufficient conditions are obtained for the solvability of the robust stabilization problem via robust reliable controller. More precisely, the derived control law guarantees the robust stabilization of nonlinear stochastic systems in the presence of known actuator failure matrix and uncertainties. Further, the results are extended to study the stabilization of stochastic systems with unknown actuator failure matrix. Moreover, the obtained criteria are formulated in terms of LMIs and also the reliable controller can be designed in terms of the solutions to certain linear matrix inequalities. Finally, numerical examples with simulation result are presented to demonstrate the validity and less conservatism of the obtained results. 相似文献
11.
Xiaojun Ban 《International journal of systems science》2016,47(15):3646-3655
In this paper, the control problem for a class of linear parameter varying (LPV) plant subject to actuator saturation is investigated. For the saturated LPV plant depending on the scheduling parameters in linear fractional transformation (LFT) fashion, a gain-scheduled output feedback controller in the LFT form is designed to guarantee the stability of the closed-loop LPV system and provide optimised disturbance/error attenuation performance. By using the congruent transformation, the synthesis condition is formulated as a convex optimisation problem in terms of a finite number of LMIs for which efficient optimisation techniques are available. The nonlinear inverted pendulum problem is employed to demonstrate the effectiveness of the proposed approach. Moreover, the comparison between our LPV saturated approach with an existing linear saturated method reveals the advantage of the LPV controller when handling nonlinear plants. 相似文献
12.
In this paper we develop an energy-based hybrid control framework for hybrid port-controlled Hamiltonian systems. In particular, we obtain constructive sufficient conditions for hybrid feedback stabilization that provide a shaped energy function for the closed-loop system, while preserving a hybrid Hamiltonian structure at the closed-loop level. Furthermore, an inverse optimal hybrid feedback control framework is developed that characterizes a class of globally stabilizing energy-based controllers that guarantee hybrid sector and gain margins to multiplicative input uncertainty of hybrid Hamiltonian systems. 相似文献
13.
This paper investigates the stability analysis and antiwindup design problem for a class of discrete-time switched linear systems with time-varying norm-bounded uncertainties and saturating actuators by using the switched Lyapunov function approach.Supposing that a set of linear dynamic output controllers have been designed to stabilize the switched system without considering its input saturation,we design antiwindup compensation gains in order to enlarge the domain of attraction of the closed-loop system in the presence of saturation.Then,in terms of a sector condition,the antiwindup compensation gains which aim to maximize the estimation of domain of attraction of the closed-loop system are presented by solving a convex optimization problem with linear matrix inequality(LMI)constraints.A numerical example is given to demonstrate the effectiveness of the proposed design method. 相似文献
14.
15.
Airong Wei Xiaoming Hu Yuzhen Wang 《International Journal of Control, Automation and Systems》2013,11(4):649-656
This paper is aimed at studying the consensus of linear multi-agent systems subject to actuator saturation. In order to solve the consensus problem, a new family of scheduled low-and-high-gain decentralized control laws are designed, provided that the dynamics of each agent is asymptotically null controllable with bounded controls, and such control laws rely on the asymptotic property of a class of parametric algebraic Ricatti equations. It is shown that the consensus of the systems with connected and fixed topology can be achieved semi-globally asymptotically via the local error low-and-high-gain feedback. An illustrative example with simulations shows that our method as well as control protocols is effective for the consensus of the linear multi-agent systems subject to actuator saturation. 相似文献
16.
In this paper, the control problem of linear systems with periodic sampling period subject to actuator saturation is considered via delta operator approach. Using periodic Lyapunov function, sufficient conditions of local stabilization for periodic sampling systems are given. By solving an optimization problem, we derive the periodic feedback control laws and the estimate of the domain of attraction. As the saturation function sat(·) belongs to the sector [0,1], sufficient conditions are derived by constructing saturation‐dependent Lyapunov functions to ensure that the periodic sampling system is globally asymptotically stable. A numerical example is given to illustrate the theoretical results proposed in this paper. Copyright © 2014 John Wiley & Sons, Ltd. 相似文献
17.
In this paper, the robust stochastic stabilization problem for the class of discrete-time uncertain Markovian jump linear systems (MJLS) with actuator saturation is considered. The definition of domain of attraction in mean square sense (DoA-MSS) is introduced to analyze the stochastic stability of the closed-loop system. By using a class of stochastic Lyapunov function which is dependent on the jump mode and saturation function, design procedures for both the mode-dependent and mode-independent state feedback controllers are developed based on the Linear Matrix Inequality (LMI) approach. Finally, a numerical example is provided to show the usefulness of the proposed techniques. 相似文献
18.
In this paper, a set invariance analysis and gain scheduling control design approach is proposed for the polytopic linear parameter-varying systems subject to actuator saturation. A set invariance condition is first established. By utilizing this set invariance condition, the design of a time-invariant state feedback law is formulated and solved as an optimization problem with LMI constraints. A gain-scheduling controller is then designed to further improve the closed-loop performance. Numerical examples are presented to demonstrate the effectiveness of the proposed analysis and design method. 相似文献
19.
Robust stability analysis and fuzzy-scheduling control for nonlinear systems subject to actuator saturation 总被引:8,自引:0,他引:8
Yong-Yan Cao Zongli Lin 《Fuzzy Systems, IEEE Transactions on》2003,11(1):57-67
Takagi-Sugeno (TS) fuzzy models can provide an effective representation of complex nonlinear systems in terms of fuzzy sets and fuzzy reasoning applied to a set of linear input-output submodels. In this paper, the TS fuzzy modeling approach is utilized to carry out the stability analysis and control design for nonlinear systems with actuator saturation. The TS fuzzy representation of a nonlinear system subject to actuator saturation is presented. In our TS fuzzy representation, the modeling error is also captured by norm-bounded uncertainties. A set invariance condition for the system in the TS fuzzy representation is first established. Based on this set invariance condition, the problem of estimating the domain of attraction of a TS fuzzy system under a constant state feedback law is formulated and solved as a linear matrix inequality (LMI) optimization problem. By viewing the state feedback gain as an extra free parameter in the LMI optimization problem, we arrive at a method for designing state feedback gain that maximizes the domain of attraction. A fuzzy scheduling control design method is also introduced to further enlarge the domain of attraction. An inverted pendulum is used to show the effectiveness of the proposed fuzzy controller. 相似文献
20.
Anti‐windup design for uncertain nonlinear systems subject to actuator saturation and external disturbance 下载免费PDF全文
A novel anti‐windup design method is provided for a class of uncertain nonlinear systems subject to actuator saturation and external disturbance. The controller considered incorporates both an active disturbance rejection controller as well as an anti‐windup compensator. The dynamical uncertainties and external disturbance are treated as an extended state of the plant, and then estimate it using an extended state observer and compensate for it in the control action, in real time. The anti‐windup compensator produces a signal based on the difference between the controller output and the saturated actuator output, and then augment the signal to the control to deal with the windup phenomenon caused by actuator saturation. We first show that, with the application of the proposed controller, the considered nonlinear system is asymptotically stable in a region including the origin. Then, in the case that the controller in linear form, we establish a linear matrix inequality‐based framework to compute the extended state observer gain and the anti‐windup compensation gain that maximize the estimate of the domain of attraction of the resulting closed‐loop system. The effectiveness of the proposed method is illustrated by a numerical example. Copyright © 2016 John Wiley & Sons, Ltd. 相似文献