首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 265 毫秒
1.
固体碱催化碳酸二甲酯和3-戊酮合成丙酸甲酯   总被引:2,自引:0,他引:2  
以碳酸二甲酯(DMC)和3-戊酮为原料,以固体碱为催化剂合成了丙酸甲酯,并考察了反应温度、反应时间、催化剂用量和原料配比等因素对合成反应的影响。实验结果表明,固体酸催化剂不利于丙酸甲酯的生成,而具有中强碱位的MgO对该反应具有较好的催化性能。当以MgO为催化剂时,反应的最佳条件为:反应温度260℃、反应时间5h、催化剂用量占反应物总质量的1.5%、n(DMC)∶n(3-戊酮)=6,在该反应条件下,3-戊酮的转化率和丙酸甲酯的选择性分别达到40.9%和53.9%。同时,反应主要副产物为3-戊酮缩合产物(4-甲基-5-乙基-4-庚烯-3-酮)、甲基化产物(2-甲基-3-戊酮和3-甲氧基-2-戊烯)及中间产物2-甲基丙酰乙酸甲酯等。  相似文献   

2.
岳涛  高爱红  魏凤  张健  曹波  张立东 《石油化工》2013,42(5):533-536
建立了一种制备第三类头孢抗生素中间体4-乙基-2,3-双氧代哌嗪-1-甲酸甲酯的新方法。该方法以1-乙基-2,3-双氧代哌嗪和氯甲酸甲酯为原料。考察了缚酸剂种类和用量、反应温度、反应时间和溶剂种类对合成反应的影响。实验结果表明,合成4-乙基-2,3-双氧代哌嗪-1-甲酸甲酯的适宜反应条件为:以丙酮为溶剂、以三乙胺为缚酸剂、n(1-乙基-2,3-双氧代哌嗪)∶n(氯甲酸甲酯)∶n(三乙胺)=1.0∶1.2∶1.8、反应温度-10℃、反应时间5 h。在此条件下,产品收率为97%;经HPLC分析,产品纯度为99.2%;1H NMR表征结果显示,合成产物为4-乙基-2,3-双氧代哌嗪-1-甲酸甲酯。该方法产品成本低,毒性小,收率高,后处理简单,"三废"排放少,具有很高的工业应用前景。  相似文献   

3.
以咪唑和氯乙酸乙酯为原料,乙腈为溶剂,三乙胺为缚酸剂合成了2-(1-咪唑基)-乙酸乙酯,再经水解得到2-(1-咪唑基)-乙酸,并经1H NMR,13C NMR,IR确证了结构。考察了反应时间及三乙胺用量对反应收率的影响,结果表明,在反应时间4 h,n(三乙胺);n(咪唑)=1.3:1条件下,产物总收率为60.5%,含量(质量分数)大于98.6%。  相似文献   

4.
以2-噻吩甲醛和硝基甲烷为原料,β-丙氨酸为催化剂,DMF为溶剂合成了2-硝基乙烯噻吩。考察了原料配比、催化剂用量、反应温度、反应时间对产物收率和纯度的影响。较佳反应条件为:n(2-噻吩甲醛)∶n(硝基甲烷)∶n(β-丙氨酸)=1∶1.2∶0.1,DMF为溶剂,在超声辐射下,90℃反应1h,产物2-硝基乙烯噻吩的收率为94%,纯度为99.1%。  相似文献   

5.
以2-氨基偶氮甲苯为原料,催化加氢合成2,5-二氨基甲苯。考察了催化剂类型、原料浓度、催化剂用量、反应温度和反应压力等对反应的影响。结果表明,介孔碳负载钯催化剂Pd/MC具有高活性和稳定性。经单因素实验考察,确定优化工艺条件为:采用甲醇-水(体积比3∶7)溶液作为溶剂,原料浓度为100~200 g/L,催化剂的添加量为原料的0.25%(质量分数),反应温度80℃,反应压力2.0 MPa,溶液初始pH值为8,反应时间3~4 h。在此条件下,2-氨基偶氮甲苯转化率接近100%,2,5-二氨基甲苯收率大于98%,催化剂可重复使用5次以上,具有工业化应用前景。  相似文献   

6.
《石油化工》2015,44(10):1224
以乙二胺、乙醇胺和CO2为原料,Ru/Al2O3为催化剂,水为溶剂一步法合成1-(2-氨乙基)-2-咪唑烷酮(AEI)。通过单因素实验和正交实验考察了反应温度、反应时间、CO2压力、溶剂水用量和催化剂负载量等反应条件对乙二胺转化率和AEI收率的影响,分析了CO2在AEI合成过程中的作用机理。实验结果表明,在反应温度220℃、CO2压力8 MPa、反应时间10 h、负载1%(w)Ru/Al2O3催化剂和溶剂水7 m L条件下,AEI收率可达70.25%;增加CO2压力有利于提高乙二胺转化率和中间产物2-咪唑烷酮的生成,但CO2压力的增加增强了CO2与2-咪唑烷酮上氨基的作用,阻碍了氨基和乙醇胺上羟基脱水生成AEI,降低了AEI收率。  相似文献   

7.
Fe-壳聚糖/SBA-15催化潜手性酮不对称氢转移反应   总被引:4,自引:1,他引:3  
薛屏  吴涛 《石油化工》2006,35(9):858-862
以SBA-15介孔分子筛为载体制备了Fe(Ⅲ)-壳聚糖(CS)络合物为活性组分的多相手性催化剂(Fe-CS/SBA-15)。以异丙醇作氢源,在常压下Fe-CS/SBA-15催化剂用于苯乙酮和4-甲基-2-戊酮不对称氢转移反应,考察了Fe-CS/SBA-15催化剂中Fe含量、反应温度、反应时间及助催化剂KOH浓度对底物转化率和产物对映选择性的影响规律。实验结果表明,Fe-CS/SBA-15催化剂中适宜的Fe质量分数为2.2%;对于苯乙酮和4-甲基-2-戊酮不对称氢转移反应,适宜的反应条件为:KOH浓度0.03m ol/L,反应温度70℃,反应时间分别为4,8h。在此条件下,苯乙酮的转化率为27.7%,产物R-1-苯乙醇的对映体过量(ee)值为87.4%(4h);4-甲基-2-戊酮的转化率为25.5%,产物R-4-甲基-2-戊醇的ee值为50.2%(8h)。  相似文献   

8.
以对苯二甲酰氯和环己胺为原料,添加缚酸剂,合成了N,N′-二环己基对苯二甲酰胺。考察了缚酸剂的种类及用量对产物收率的影响;并以N,N′-二环己基对苯二甲酰胺为β成核剂对聚丙烯进行改性,考察其对聚丙烯性能的影响。实验结果表明,以甲苯为溶剂,以吡啶、三乙胺或三乙胺-吡啶(n(吡啶)∶n(三乙胺)=0.10)为缚酸剂时,适宜的合成条件为:110.6℃、6.06.5 h、n(甲苯)∶n(对苯二甲酰氯)=36.2、n(缚酸剂)∶n(对苯二甲酰氯)=2.46.5 h、n(甲苯)∶n(对苯二甲酰氯)=36.2、n(缚酸剂)∶n(对苯二甲酰氯)=2.42.8;以吡啶为溶剂(又为缚酸剂)时,适宜的合成条件为:115.2℃、4.5 h、n(吡啶)∶n(对苯二甲酰氯)=20.0;与不使用缚酸剂相比,添加缚酸剂可使产物收率从58.0%提高至75.9%2.8;以吡啶为溶剂(又为缚酸剂)时,适宜的合成条件为:115.2℃、4.5 h、n(吡啶)∶n(对苯二甲酰氯)=20.0;与不使用缚酸剂相比,添加缚酸剂可使产物收率从58.0%提高至75.9%81.7%;采用添加缚酸剂合成的N,N′-二环己基对苯二甲酰胺为β成核剂时,可使聚丙烯的抗冲强度从3.95 kJ/m2提高至15.80 kJ/m2。  相似文献   

9.
以β-萘酚和氯仿为原料,PEG-400为催化剂,乙醇为溶剂,在氢氧化钠存在的条件下合成了2-羟基-1-萘甲醛。研究了不同相转移催化剂催化活性、催化剂的用量、反应物摩尔比、反应温度、碱浓度和碱用量对反应的影响。最佳合成条件:0.027 7molβ-萘酚,β-萘酚与氯仿的摩尔比为1.0∶(3.5~4.0),PEG-400用量为0.24g,40%(质量分数)氢氧化钠溶液12mL,反应温度77℃,反应时间60min;在此条件下,2-羟基-1-萘甲醛的收率为56.4%。PEG-400作为相转移催化剂具有价廉、无毒及稳定性好等优点。  相似文献   

10.
反应型聚硅氧烷改性聚氨酯水分散体的合成及性能   总被引:5,自引:4,他引:1  
采用N-[(1,1-二甲基-2-乙酰基)乙基]-β-二羟乙氨基丙酰胺(DDP)和双羟丙基封端聚硅氧烷(PDS)合成了反应型聚硅氧烷改性聚氨酯水分散体。测定了水分散体的黏度、表面张力、粒径、粒径分布及储存稳定性;观察了水分散体中粒子的聚集状态及胶膜断面的相分离形态;研究了水分散体成膜后胶膜的耐水和耐溶剂性能、凝胶含量、拉伸强度、断裂伸长率及热失重情况。实验结果表明,水分散体的黏度及表面张力随DDP含量的增加而增大,加入PDS后水分散体的黏度及表面张力减小;加入DDP和PDS均能提高胶膜的热稳定性;成膜时的交联反应及加入PDS显著提高了膜的耐水、耐溶剂性能和凝胶含量等性能,与聚氨酯水分散体相比,吸水率最大下降了45.83%,吸甲苯率最大下降了15.53%,凝胶质量分数最大增加了9.62%。  相似文献   

11.
氨基硅氧烷改性水性聚氨酯及其乳胶膜的性能   总被引:4,自引:2,他引:2  
以异佛尔酮二异氰酸酯、聚四氢呋喃二醇、二羟甲基丙酸和三羟甲基丙烷(TMP)等为原料合成了内交联的水性聚氨酯预聚体,用3-氨基丙基三乙氧基硅烷(KH550)进行封端改性,乳化后进一步水解缩合交联,得到了高交联度的水性聚氨酯。采用傅里叶变换红外光谱、热重分析和X射线衍射技术对水性聚氨酯的结构进行了表征,并测试了乳胶膜的力学性能和耐介质性。实验结果表明,合成预聚体的较佳条件:n(—NCO):n(—OH)=1.4、—COOH质量分数1.8%(基于水性聚氨酯)、TMP质量分数1.0%(基于水性聚氨酯);当KH550质量分数(基于水性聚氨酯)由0增至10.0%,乳胶膜的拉伸强度由18 MPa增至28 MPa,吸水率由17%降至8%,吸乙醇率由46%降至30%以下。表征结果显示,KH550上的—NH_2与水性聚氨酯的端—NCO发生反应,实现了化学改性;KH550使乳胶膜的耐热性明显提高;随KH550含量的增加,乳胶膜的结晶度下降。  相似文献   

12.
水性聚氨酯/硅烷蒙脱土纳米复合材料的制备与性能   总被引:12,自引:4,他引:8  
用硅烷偶联剂修饰蒙脱土,制备了水性聚氨酯/硅烷蒙脱土纳米复合材料。傅里叶变换红外光谱、X射线衍射和透射电镜表征结果表明,硅烷偶联剂对蒙脱土的表面进行了有效的修饰,合成水性聚氨酯的各单体在蒙脱土层间聚合,使片层间距达到了5.19nm。热重分析和力学测试表明,水性聚氨酯/硅烷蒙脱土纳米复合材料比纯水性聚氨酯具有更优异的热性能,当硅烷蒙脱土的质量分数为2%时,拉伸强度和断裂伸长率分别提高了56.4%和40.0%。  相似文献   

13.
以裂解C_9为原料、改性ZSM-5分子筛为催化剂,在40mL固定床催化反应装置上进行了裂解C_9芳构化的探索实验,实验结果表明,反应温度在450~500℃内,苯、甲苯、二甲苯(三者简称为BTX)的含量迅速增加、茚和茚满的总含量快速下降。在200mL固定床催化反应装置上进行了芳构化放大实验,实验结果发现,在改性的ZSM-5分子筛用量115.3g、常压、反应温度500℃、WHSV=0.30h~(-1)的条件下,得到了无色透明的可作芳烃原料的液相产物,液相产物中BTX的质量分数大于71%、茚和茚满的总质量分数小于2%,液体收率的平均值为75%。改性ZSM-5分子筛催化剂可重复使用。  相似文献   

14.
甲醇与多聚甲醛反应制备甲缩醛   总被引:3,自引:0,他引:3  
以甲醇和多聚甲醛为原料、硫酸为催化剂,在甲苯溶剂中合成了甲缩醛。考察了反应温度、原料配比、催化剂用量对甲醇转化率的影响。实验结果表明,较适宜的工艺条件为:反应温度60℃,n(多聚甲醛):n(甲醇)=0.550,催化剂用量(占甲醇的质量分数)5%,反应时间60 min。在此条件下,甲醇的平衡转化率为84.6%,甲缩醛的选择性为97.9%。为提高甲醇的转化率和甲缩醛的收率,将精馏技术应用到甲缩醛合成过程中,并取得了较好的效果。采用精馏技术后,生成的甲缩醛以甲缩醛、甲醇和水的共沸物的形式蒸出,甲醇的平衡转化率达91.8%,甲缩醛的选择性达99.4%;精馏产品的质量组成为甲缩醛91.1%、甲醇6.8%、水2.1%。  相似文献   

15.
环戊烯选择氧化合成戊二酸绿色催化过程   总被引:6,自引:0,他引:6  
研究了以环戊烯为原料、草酸为有机络合剂、H2O2为氧化剂,在催化剂钨酸(H2WO4)的作用下一步合成戊二酸的绿色新过程,考察了氧化剂的含量、反应物配比、催化剂用量、反应温度、反应时间等对反应的影响。确定了最佳反应条件:选用50%(质量分数)的H2O2为氧化剂、反应物配比n(H2O2)∶n(环戊烯)=4.4、n(H2WO4)∶n(草酸)=1、催化剂用量(H2WO4占环戊烯的摩尔分数)1.5%、反应温度85℃、反应时间6h。在最佳反应条件下,戊二酸的收率高达92.3%。该方法洁净、高效,产物戊二酸的纯度高,符合绿色化学的要求。实验结果表明,强酸性环境有利于戊二酸的生成,表明此反应为酸催化的选择氧化反应。  相似文献   

16.
四-(2,6-二甲苯基)间苯二酚双磷酸酯的合成   总被引:2,自引:1,他引:1  
以三氯氧磷、2,6-二甲基苯酚和间苯二酚为原料,经过两步反应合成了阻燃剂四-(2,6-二甲苯基)间苯二酚双磷酸酯(DMP-RDP);考察了溶剂种类、催化剂种类及用量、原料配比、第一步反应的温度和时间对合成反应的影响,确定了适宜的合成条件:溶剂二甲苯用量占体系总质量的50%;催化剂MgCl_2用量占三氯氧磷质量的2.0%;n(2,6-二甲基苯酚):n(三氯氧磷):n(间苯二酚)=4.10:2.08:1.00;第一步反应先在120℃下反应6h,再于140~145℃下回流2h;第二步反应的温度140~145℃,时间6h。在此条件下,合成的DMP-RDP纯度为99.56%,收率为92.25%。采用FTIR,~1H NMR,TG-DSC等方法对产物进行了表征和热性能分析;产品经检测,外观、磷含量、熔点等指标达到国外同类产品标准。  相似文献   

17.
碳酸钾催化剂上二氧化碳与1,2-丙二醇合成碳酸丙烯酯   总被引:8,自引:3,他引:5  
陈鸿  赵新强  王延吉 《石油化工》2005,34(11):1037-1040
研究了CO2与1,2-丙二醇(PG)合成碳酸丙烯酯(PC)的反应,优化了反应条件。最佳反应条件为:以碳酸钾为催化剂、反应温度423.15K、反应时间12h、CO2初始压力2.0M Pa、催化剂用量(质量分数)2.0%、n(乙腈)∶n(PG)∶n(CO2)=19.2∶3∶4。在此条件下,PC的最高收率为12.6%,PG转化率为23.8%,PC选择性为53.0%。采用色谱-质谱联用技术对反应产物进行了定性分析,推测主要副反应为溶剂乙腈水解生成乙酰胺,乙酰胺与PG反应生成1,2-丙二醇的乙酸酯。同时经实验发现,提高PC选择性的关键是要有适宜的溶剂。该合成方法为CO2的有效利用提供了一条新途径。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号