共查询到20条相似文献,搜索用时 15 毫秒
1.
N. P. Shabel’skaya 《Glass Physics and Chemistry》2017,43(3):240-245
The conditions for the formation of a spinel structure from a NiO–CuO–Fe2O3–Cr2O3 oxide mixture using several technological approaches have been examined. Addition of KCl is accompanied with the formation of two spinel-like phases, whereas in the absence of KCl just one solid solution of nickel–copper ferrite–chromite with the structure of a cubic spinel is formed. At the temperature of thermal treatment of 900°C, the presence of an admixture phase of the delafossite (CuCrO2) type was established. The conditions for the fabrication of samples containing two spinel phases (cubic and tetragonal) characterized with the most developed surface and manifesting = increased catalytic activity in the reaction of the decomposition of an organic substance by hydrogen peroxide have been formulated. The studied features of spinel synthesis can be of interest for developing materials with an active surface promising for application as adsorbents of catalysts and sensors. 相似文献
2.
We report a rational synthesis of maghemite (γ-Fe2O3) short-nanotubes (SNTs) by a convenient hydrothermal method and subsequent annealing process. The structure, shape, and magnetic
properties of the SNTs were investigated. Room-temperature and low-temperature magnetic measurements show that the as-fabricated
γ-Fe2O3 SNTs are ferromagnetic, and its coercivity is nonzero when the temperature above blocking temperature (T
B). The hysteresis loop was operated to show that the magnetic properties of γ-Fe2O3 SNTs are strongly influenced by the morphology of the crystal. The unique magnetic behaviors were interpreted by the competition
of the demagnetization energy of quasi-one-dimensional nanostructures and the magnetocrystalline anisotropy energy of particles
in SNTs. 相似文献
3.
In this paper, the apparent chain-like core-shell structure Fe3O4–SiO2–chitosan nanoparticles was synthesized by two-step method with cross-linking action of glutaraldehyde based on layer-by-layer technology, the composite particles were characterized by IR, XRD, TEM, SEM, EDS and VSM analytical methods, and the synthesis conditions of the product were studied. The results indicated that the diameter of the composite particles is about 106.5 nm, the parietal layer of chitosan is 20 nm, and after crosslinking action of glutaraldehyde, chitosan uniformaly coated the outer surface of Fe3O4–SiO2. 相似文献
4.
Md. Amir M. Geleri S. Güner A. Baykal H. Sözeri 《Journal of Inorganic and Organometallic Polymers and Materials》2015,25(5):1111-1119
In this study, FeBxFe2?xO4 nanoparticles (NPs) were synthesized by the polyol method. The M–H hysteresis curves exhibit superparamagnetic characteristics that are both coercivity and remanent magnetization values are negligible. The particle size dependent Langevin function was applied to calculate the magnetic particle dimensions around 9 nm. The measured magnetic moments of NPs are in range of (1.52–2.2) µB and almost half or less with respect to 4 µB of bulk Fe ferrite. Magnetic anisotropy was specified as uniaxial and calculated effective anisotropy constants (K eff ) are between 43.3 × 104 and 19.4 × 104 emu/g. The UV–Vis diffuse reflectance spectroscopy and Kubelka–Munk theory were used to determine the optical properties. The estimated optical band gap values (2.15–2.48 eV) of FeBxFe2?xO4 NPs are bigger with respect to reported values (1.88–2.12 eV) for Fe3O4 NPs in the literature. The bigger E g values are mainly attributed to B concentration and partly to quantum confinement effect. 相似文献
5.
Some photon interaction parameters such as mass attenuation coefficient, effective atomic number, half value layer, mean free path and electron density for 15ZnO–(17.5–x)Al2O3–xFe2O3–67.5P2O5 glass system (x = 0, 7.5, 12.5, 17.5) and 15ZnO–(25–x)Al2O3–xFe2O3–60P2O5 glass system (x = 0, 25) have been investigated in the photon energy range of 1 keV to 100 GeV. It has been observed that all the photon interaction parameters for the selected glass systems vary with the photon energy. Among the selected glass systems, the sample 15ZnO–25Fe2O3–60P2O5 glass system shows maximum values for mass attenuation coefficients, effective atomic numbers, electron densities and minimum values for mean free path and half value layer in the entire energy grid. 相似文献
6.
Idris Kabalci Erkan Koc Sirri Semih Ozturk 《Journal of Inorganic and Organometallic Polymers and Materials》2017,27(3):788-794
Oxide based optical glass materials has important potential material in many applications from fiber optic to sensor due to the high transparency and amourphous structures. The objective of this study is to synthesize the novel optical glass materials based on the bismuth and aluminum contents to be able to determine the physical, chemical and mechanical properties by considering the systematic experimental steps. In this study, Bi2O3–Al2O3 based tellurite optical glasses have been prepared by using conventional melt quenching method as a function of the both Bi2O3 and Al2O3 compositions. There is a strong interactions between the glass former and modifier ions that might effect on the structure and mechanical properties. During the experimental steps, thermal, structural and mechanical properties of the prepared glass materials have been determined considering the DTA/DSC, FT-IR spectroscopy, SEM and Vicker’s hardness techniques, respectively. Thermal parameters, like glass transition, Tg, onset, Tx, crystallization, Tp, and melting, Tm, temperatures were obtained by using DTA scan. 相似文献
7.
Nanopowders with a composition of (СeO2)1–x(Gd2O3)x (x = 0.03, 0.05, 0.07, and 0.10) are synthesized by the coprecipitation method using cryotechnologies. The coherent scattering region (CSR) of the powders is 10–14 nm and the specific surface area is 70–81 m2/g. Based on the powders, ceramic nanosized materials with CRS of 64–71 nm are obtained. The dependence of the phase composition, microstructure, and electrical transport properties of the obtained samples on the Gd2O3 content is established. In a CeO2–Gd2O3 system, a solid solution with the composition of (CeO2)0.90(Gd2O3)0.10 has the highest ionic conductivity with the transfer number of ions of ti = 0.74 at a temperature of 700°C. It is shown that ceramics of this composition can be used as a solid electrolyte of intermediate-temperature fuel cells due to their physicochemical characteristics. 相似文献
8.
Guowei Wang Feng Zhang Huaping Zuo Zhenhua Yu Shihui Ge 《Nanoscale research letters》2010,5(7):1107-1110
A series of nano-granular films composed of magnetic metal (Fe65Co35) granules with a few nanometers in size and semiconductor oxide (ZnO) have been fabricated by a magnetron sputtering method, and excellent soft magnetic properties have been achieved in a wide metal volume fraction (x) range for as-deposited samples due to the exchange coupling between FeCo granules (a ferromagnetic interaction in nano-scale). In a wide range (0.53 < x < 0.71), the films exhibit coercivity H C not exceeding 15 Oe, along with high resistivity. Especially for the sample with x = 0.67, coercivities in hard and easy axes are 1.43 and 7.08 Oe, respectively, 4πM S = 9.85 kg, and ρ reaches 2.06 × 103 μΩ cm. The dependence of complex permeability μ = μ′ − jμ″ on frequency shows that the real part μ′ is more than 100 below 1.83 GHz and that the ferromagnetic resonance frequency reaches 2.31 GHz, implying the promising for high frequency application. The measured negative temperature coefficient of resistivity reveals that may be the weak localized electrons existing in samples mediate the exchange coupling. 相似文献
9.
A highly dispersive powder with a (ZrO2)0.92(Y2O3)0.03(Gd2O3)0.03(MgO)0.02 composition and specific surface area of 150 m2/g has been synthesized via a method of coprecipitation of hydroxides with the subsequent cryochemical treatment of the gel. Nanoceramics based on the cubic modification of zirconium dioxide with the grain size of ~40–45 nm have been obtained. The temperature dependence of the specific electrical conductance of the nanoceramics within a temperature range of 350–870°C in air has been studied, and the ratio of the ionic and electronic parts of the conductance has been determined. Recommendations for the use of the obtained oxide nanocomposite as an electrolyte for a high-temperature fuel cell have been given. 相似文献
10.
Buhuan Wang Jiaqiang Sun Mohamed Abbas Yanting Liu Fanhua Kong Haicheng Xiao Jiangang Chen 《Catalysis Letters》2017,147(5):1153-1161
11.
Marta Legawiec-Jarzyna Wojciech Juszczyk Magdalena Bonarowska Zbigniew Kaszkur Leszek Kępiński Zbigniew Kowalczyk Zbigniew Karpiński 《Topics in Catalysis》2009,52(8):1037-1043
A series of Pt/Al2O3 catalysts were prepared by the impregnation method and were characterized by TEM, XRD, H2 and CO chemisorptions, and investigated in the hydrodechlorination of tetrachloromethane. Three Pt-rich, Pt–Au/Al2O3 catalysts (Pt100, Pt95Au5 and Pt90Au10) showed a similar metal particle size (~2.5–2.7 nm), so observed changes in the catalytic behavior are ascribed to alloying
effect, especially because a considerable degree of Pt–Au mixing was achieved in the bimetallic samples. It appeared that
by introducing very small amount of gold (10 at.%) to platinum, the catalytic activity is increased. It is argued that the
occurrence of this moderate synergistic effect is associated with a decreased tendency of surface chloriding when platinum
is alloyed with gold.
Zbigniew Kowalczyk—deceased. 相似文献
12.
E. A. Buluchevskii E. D. Fedorova A. V. Lavrenov M. V. Zhuravleva 《Catalysis in Industry》2018,10(2):118-125
The effect of the hydroisomerization conditions of the benzene-containing fraction of catalytic reforming gasoline on the yield and composition of products is studied on Pt/B2O3–Al2O3 and Pt/WO3–Al2O3 catalysts. These catalysts allow benzene to be completely removed from the raw material. At the same time, the greatest yields of liquid products are obtained with minimal losses of the octane number at 2 MPa, a mass feedstock hourly space velocity (MFHSV) of 2 h?1, and 325°C: 96.3 and 95.4 wt % on Pt/B2O3–Al2O3 and Pt/WO3–Al2O3 catalysts, respectively. The activity of the catalysts is maintained for 100 h during their operation. 相似文献
13.
14.
Sm3+-doped SrO–Al2O3–SiO2 glass-ceramics with excellent luminescence properties were prepared by batch melting and heat treatment. The crystallization behavior and luminescent properties of the glass-ceramics were investigated. The results indicate that the crystal phase in this system is monocelsian (SrAl2Si2O8). Under the excitation with blue light (475 nm) the Sm3+-doped SrO–Al2O3–SiO2 glass-ceramics emit green, orange and red lights centered at 565, 605, 650 and 715 nm, which can be assigned to the 4G5/2 → 6HJ/2 (J = 5, 7, 9, 11) electron transitions in Sm3+ ions, respectively. With the increase of nucleation/crystallization temperature, the crystallite part rises from 66 to 79%. Besides, by increasing crystallization temperature or concentration of Sm3+, the samples emission located at 565, 605 and 650 nm is intensified significantly. We envision that, by fine controlling and combining of these three (green, orange and red) lights in an appropriate proportion, the Sm3+-doped glass-ceramics are promising luminescence materials for white light-emitting diodes devices. 相似文献
15.
Pawel Mierczynski Radoslaw Ciesielski Adam Kedziora Waldemar Maniukiewicz Tomasz P. Maniecki 《Catalysis in Industry》2017,9(2):99-103
Monometallic copper and bimetallic palladium-copper catalysts supported on ZnO–Al2O3 and ZrO2–Al2O3 were prepared by conventional impregnation method and tested in methanol synthesis reaction under elevated pressure (3.5 MPa) in gradientless reactor at 220°C. The physicochemical properties of prepared catalytic systems were studied using BET, X-ray, TPR-H2, TPD-NH3 techniques. The promotion effect of palladium on catalytic activity and selectivity of copper supported catalyst in methanol synthesis reaction was proven. The highest activity of this system is explained by the Pd–Cu alloy formation. 相似文献
16.
D. Yu. Sinitsyn V. N. Anikin S. A. Eremin A. G. Yudin 《Refractories and Industrial Ceramics》2017,58(2):194-201
17.
Md. Amir A. D. Korkmaz A. Baykal M. Geleri H. Sözeri H. Güngüneş M. Sertkol Sagar E. Shirsath 《Journal of Inorganic and Organometallic Polymers and Materials》2017,27(6):1740-1749
In this study, oleylamine (OAm) capped FeMnyCoyFe2?2yO4 (0.0?≤?y?≤?0.4) nanocomposites (NCs) were prepared via the polyol route and the impact of bimetallic Co3+ and Mn3+ ions on the structural and magnetic properties of Fe3O4 was investigated. The complete characterization of FeMnyCoyFe2?2yO4@OAm NCs were done by different techniques such as XRD, SEM, TGA, FT-IR, TEM, and VSM. XRD analyses proved the successful formation of mono-phase MnFe2O4 spinel cubic products free from any impurity. The average crystallite sizes were calculated in the range of 9.4–26.4 nm using Sherrer’s formula. Both SEM and TEM results confirmed that products are nanoparticles like structures having spherical morphology with small agglomeration. Ms continued to decrease up to Co3+ and Mn3+ content of y?=?0.4. Although Mössbauer analysis reveals that the nanocomposites consist three magnetic sextets and superparamagnetic particles are also formed for Fe3O4, Co0.2Mn0.2Fe2.6O4 and Co0.4Mn0.4Fe2.2O4. Cation distributions calculation was reported that Co3+ ions prefer to replace Fe2+ ions on tetrahedral side up to all the concentration while Mn3+ ions prefer to replace Fe3+ ions on the octahedral. 相似文献
18.
Huanhuan Su Xiang Lv Zhengyi Zhang Jiajie Yu Tianhe Wang 《Journal of Porous Materials》2017,24(5):1227-1235
Fe2O3–TiO2 porous ceramic (Fe/TiPC) beads with photo-catalytic performances and high adsorption capacities were prepared by a simple high temperature solid reaction and were applied for arsenic removal from drinking water. The microstructure and morphology of Fe/TiPC were characterized by X-ray diffraction and scanning electron microscopy. More than 90% removal ratio for As (III) and As (V) were respectively achieved by Fe/TiPC within 2 h under UV irradiation. The Langmuir capacity values of Fe/TiPC for As (III) and As (V) were 13.86 and 15.73 mg/g, respectively. In addition, Fe/TiPC could be reused for up to five times without significant reduction in the photocatalytic sensitivity and adsorption capacity aspects. Good catalytic oxidation performances and high adsorption capacities as well as a sample preparation for Fe/TiPC suggest that the composites may have practical prospects for the As (III) and As (V) removal from contaminated water. 相似文献
19.
An oxygen-diluted partially premixed/oxygen-enriched supplemental combustion (ODPP/OESC) counterflow flame is studied in this paper. Flame images are obtained through experiments and numerical simulations with the GRI-Mech 3.0 chemistry. The oxygen dilution effects are revealed by comparing the flame structures and emissions with those of a premixed flame and partially premixed flame (PPF) at the same equivalence ratio (?Σ = 0.95 and ? f = 1.4). The results show that both PPF and ODPP/OESC flames have distinct double flame structures; however, the location of the premixed combustion zone and the distance between premixed/nonpremixed combustion zone are significantly different for these two cases. For the ODPP/OESC flame, the temperature in the premixed combustion zone is lower and the premixed zone itself is located farther downstream from the fuel nozzle, which leads to reduction of NO and CO emissions, as compared to those of the PPF. Therefore, by adjusting the distribution of the oxygen concentration in the premixed and nonpremixed combustion zones, the ODPP/OESC can effectively balance the chemical reaction rate in the entire combustion zone and, consequently, reduce emissions. 相似文献
20.
Yu. A. Balinova N. V. Buchilin V. G. Babashov 《Refractories and Industrial Ceramics》2018,59(2):218-222