首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 62 毫秒
1.
DTAB 和甘氨酸对钢铁表面氟铁酸盐转化膜耐蚀性的影响   总被引:1,自引:1,他引:0  
目的提高氟铁酸钾转化膜的耐蚀性。方法通过扫描电子显微镜分析、中性盐雾实验和极化曲线测试,研究氟铁酸盐转化液中加入十二烷基三甲基溴化铵和甘氨酸对钢铁表面转化膜耐蚀性的影响。结果转化液中加入两种物质使转化膜的厚度增加,自腐蚀电位正移了大约42 mV,自腐蚀电流降低了大约1/3,耐中性盐雾时间延长了2倍以上。结论钢铁表面转化膜的耐蚀性获得显著提高。  相似文献   

2.
铈盐转化膜耐蚀性能不足。采用由氟硅酸盐、氟钛酸铵双组分封闭液对镀锌钢铈盐转化膜进行了封闭处理,优选了封闭液的最佳含量及封闭工艺条件。分别采用BM-4XC金相显微镜、FEI-Quanta600环境扫描电镜、INCA能谱仪分析了铈盐转化膜封闭前后的形貌、结构与成分;依据ASTM1B17标准进行了中性盐雾腐蚀,采用PARSTAT227电化学工作站,测试了其在3.5%NaCl溶液中的极化曲线和腐蚀形貌。结果表明:镀锌钢铈盐转化膜封闭后成分从5.80%P,1.96%Fe,64.84%Zn,2.94%Ce和24.46%O变为7.34%P,55.26%Zn,3.67%Ce,33.07%O,0.19%Si和0.47%Ti;腐蚀电位负移30 mV,腐蚀电流密度降低了11.4%;封闭前中性盐雾时间为10 h,封闭后为72 h,耐蚀性能大大提高。  相似文献   

3.
钢铁工件复合稀土成膜及其耐蚀性能   总被引:1,自引:0,他引:1  
利用Ce(NO3)3溶液在钢铁工件表面制得一种金黄色的稀土转化膜.通过正交优化实验确定稀土转化膜的最佳成膜工艺条件,并且对该膜进行3.5%的NaCl浸泡实验测定其耐蚀性能.利用Ce(NO3)3和Na2MoO4复合稀土成膜的钢铁试片在3.5%的NaCl中的腐蚀速率为0.0143 mg/h·cm2;复合稀土成膜实验表明:复合处理的钢铁试片,其膜层的结合力有明显的改善,所制备稀土转化膜具有良好的耐蚀性能.   相似文献   

4.
钢铁表面硅锰钼系化学转化膜的研究   总被引:1,自引:1,他引:0  
目的通过研究硅锰钼系转化膜的新工艺,获得性能优良的膜层。方法采用单因素实验确定工艺条件,通过电化学方法研究成膜过程,采用盐雾实验检验膜层的耐蚀性能,采用划格法测试附着力,采用测厚仪测量膜厚,使用扫描电镜观察试样的表面形貌。结果筛选出最佳工艺条件为:磷酸二氢锰2.0 g/L,钼酸钠4 g/L,单宁酸0.4 g/L,氟化钠1.6 g/L,氟硅酸3 m L/L,p H=5,成膜时间8 min。所得转化膜均匀,呈非晶态,平均厚度为2.0μm,与基体的附着力达到0级。结论硅锰钼系转化膜的制备工艺中无促进剂亚硝酸钠,所得转化膜的厚度、耐腐蚀性及附着力能满足生产需要。  相似文献   

5.
对6063铝合金的氟铝酸钠转化膜进行了改性,确定改性后的最佳工艺条件为:氟化钠7.5 g/L,硅酸钠5 g/L,六偏磷酸钠3 g/L,偏钒酸铵5 g/L,pH值3.0~4.0,常温,转化时间20 min。采用该工艺对铝合金进行转化处理,极化曲线测试结果表明,铝合金表面的腐蚀电位正移了大约70 mV,腐蚀电流密度减小了大约90%,耐蚀性显著提高,耐中性盐雾时间可达264 h。  相似文献   

6.
pH值对镁表面植酸转化膜组织与耐蚀性能的影响   总被引:2,自引:0,他引:2  
通过SEM、OM、EDS及点滴法耐蚀性能测试等方法,研究了pH值对镁表面植酸转化膜组织与耐蚀性能的影响。结果表明:pH值对植酸转化膜的成膜过程影响很大,pH=1.5~2.0时,沉积效率低,成膜困难;pH=3.5~4.0时膜层开裂;当pH=3.0时,膜层光滑,耐腐蚀性能最佳。  相似文献   

7.
钢铁表面环保型杂多酸化学转化膜的耐蚀性   总被引:1,自引:0,他引:1  
对多种成膜条件下形成的钢铁表面化学膜进行了研究,并通过H2S实验、点滴实验和盐水浸泡等快速腐蚀实验,比较了在多种杂酸条件下形成的钢铁表面防护膜的防腐效果.结果表明:A3钢试片在Na4PMo11VO40盐溶液中处理后,表面能形成色彩鲜艳的钝化保护膜;该钝化膜不但具有良好的装饰效果,而且具有较好的耐腐蚀性能;其表面形成的化合物已不是[PMo11VO40]4+的简单盐,而是组成复杂的化合物.  相似文献   

8.
采用容量法研究了Mg-Gd-Y-Zr合金表面铈转化膜的耐蚀性能,通过正交试验获得在其表面制备铈转化膜的最佳条件:pH值为10.0,成膜时间为30 min,成膜促进剂的浓度为0.05 mol/L,成膜温度为25 ℃.其影响程度为pH值>成膜时间>成膜促进剂的浓度>成膜温度.比较了铈转化膜、铬酸盐转化膜及光板镁合金在3.5%NaCl溶液中的耐蚀行为.实验结果表明铈转化膜显著地提高了镁合金的耐腐蚀性能.  相似文献   

9.
研究了酸洗以及酸洗+碱洗前处理工艺对AZ91D镁合金无铬、无裂纹、低能耗钛/锆转化膜耐蚀性能的影响。结果表明,单独的酸洗前处理使得AZ91D镁合金表面的α相优先溶解,合金表面粗糙度增加,不利于钛/锆转化膜耐蚀性能的增加。合理地利用酸洗+碱洗调整AZ91D镁合金表面化学状态能够有效提高钛/锆化学转化膜的耐蚀性能。  相似文献   

10.
目的研究铝合金表面非铬酸盐高耐蚀性转化膜的制备工艺。方法以K2Zr F6和K2Ti F6为主盐,KMn O4为氧化剂,Na F为成膜促进剂,在5052铝合金表面制备化学转化膜。采用SEM,EDS,FT-IR,XPS对转化膜的形貌、结构以及成分进行分析,通过硫酸铜点滴实验、全浸蚀实验和极化曲线对转化膜的耐蚀性进行研究。结果获得了土黄色转化膜,主要由Al F3·3H2O,Al Ox/Al,Al2O3,Mn O2和Ti O2组成。转化处理后,铝合金的腐蚀电位正移了约591 m V,腐蚀电流密度由1.10μA/cm2降低为0.48μA/cm2。经过封闭处理后,腐蚀电流密度降低为0.04μA/cm2,耐蚀性明显提高。结论以K2Zr F6和K2Ti F6为主盐在铝合金表面形成的土黄色化学转化膜具有良好的耐蚀性。  相似文献   

11.
马琳梦  邹忠利  许满足  刘坤 《表面技术》2022,51(1):113-120, 191
目的 在镁合金表面制备一种新型的化学转化膜,以提高其耐蚀性。方法 通过化学浸渍法,以铁氰化钾作为成膜主盐,在镁合金表面制备一层耐蚀性较好的化学转化膜,主要探究老化时间对AZ31B镁合金铁氰化钾转化膜耐蚀性的影响。利用扫描电镜(SEM)、X射线光电子能谱仪(XPS)、X射线衍射仪(XRD)和能谱仪(EDS)对膜层表面形貌及组成进行分析表征,利用电化学方法和析氢实验研究转化膜的耐蚀性能,利用浸泡实验探究膜层的寿命。结果 镁合金基体表面生成了一层具有较少裂纹的膜层,膜层厚度约为20μm。XPS、XRD及EDS结果表明,膜层主要成分为Fe4[Fe(CN)6]3。动电位测试结果显示,老化12 h的膜层耐蚀性最佳,相比于未经处理的镁合金试样,其自腐蚀电位正移了约1000mV,自腐蚀电流密度下降了约3个数量级。电化学交流阻抗结果显示,老化时间为12 h的电荷转移电阻(Rct)最大,为41 380Ω·cm2,相比于其他老化时间的试样有了显著的提升。析氢实验结果也证明,老化12h的铁氰化钾转化膜明显提高了AZ31B镁...  相似文献   

12.
采用w(NaCl)=5%溶液浸泡和动电位极化曲线方法评估了转化膜的耐腐蚀性能,结合EDX和SEM等表面分析技术,研究了转化膜表面元素分布及表面形貌特征。结果表明:促进剂A的加入提高了膜层耐腐蚀性能。大量膜层表面不规则颗粒起源于碱腐蚀阶段,是由金属间化合物和异相粒子组成,如AlFeSiMn、β-AlFeSi等。该类颗粒的存在提高了异相界面阴极特性,为Ce沉积提供衬底,同时形成Cu/Al电偶极和尖端应力降低转化膜性能。  相似文献   

13.
目的 研究壳聚糖对铝合金表面天冬氨酸-钛锆转化膜组织结构及耐蚀性能的影响。方法 在5083船用铝合金表面分别制备添加不同含量壳聚糖的天冬氨酸-钛锆转化膜,采用SEM、EDS、FT-IR、XPS等表征手段,对转化膜的组织结构以及成分进行分析。通过电化学工作站对添加不同含量壳聚糖转化膜的开路电位-时间曲线及极化曲线进行分析。结果 成功制备了添加不同含量壳聚糖的天冬氨酸-钛锆转化膜,添加壳聚糖后,转化膜的裂纹减少,并在红外光谱结果中存在较强的氢键,出现与天冬氨酸及壳聚糖相对应的特征峰。XPS结果表明,转化膜中的Zr以ZrO2及Zr的有机络合物形式存在,转化膜中的Ti以TiO2形式存在,同时也存在天冬氨酸自身结构以及壳聚糖自身结构的峰位。腐蚀电流密度由未添加壳聚糖时的3.966×10-6 A/cm2降低至3.274×10-7A/cm2,耐蚀性具有明显提升。结论 添加壳聚糖能够与传统天冬氨酸-钛锆转化膜结合形成络合物转化膜。适量添加壳聚糖能够改善钛锆转化膜的裂纹情况及耐蚀性,当壳聚糖添加量为15 mL/L时,膜层裂纹最少,同时转化膜的耐蚀性最优。  相似文献   

14.
林碧兰 《表面技术》2016,45(3):115-119
目的通过钼酸钠(SM)添加剂、SM前处理、SM后处理三种方案对铝合金表面植酸转化膜进行改进研究,以进一步提高其耐蚀性。方法通过动电位极化测试研究改进后铝合金在3.5%(质量分数)Na Cl溶液中的耐蚀性。结果随着SM添加剂浓度的增加,铝合金表面植酸转化膜的耐蚀性先增强再减弱,SM质量浓度为30 g/L时的腐蚀保护效率Pe最大,达95.5%,而不含SM时的Pe仅为86.8%。p H值太大(p H=8.0)或太小(p H=3.0)都不利于形成耐蚀性更好的膜层,p H值为6.0时的Pe达98.6%。SM后处理会严重影响植酸转化膜的耐蚀性,腐蚀电流密度Jcorr大幅增大;SM前处理可提高植酸转化膜的耐蚀性,Pe达98.2%;SM前处理与添加剂同时应用时,植酸转化膜耐蚀性提高幅度更显著,Jcorr仅为0.042μA/cm2,极化电阻Rp达222 kΩ·cm2,Pe达99.5%。结论 SM添加剂和SM前处理均可明显提高铝合金表面植酸转化膜的耐蚀性,且复合作用时的效果更显著,而SM后处理不能提高铝合金表面植酸转化膜的耐蚀性。  相似文献   

15.
目的 提高304不锈钢的耐腐蚀性能.方法 采用磁控溅射技术在304不锈钢表面沉积TiN涂层,并采用SEM、XRD及GDOES对涂层的表面形貌、成分进行测试.通过极化曲线和电化学噪声技术评价TiN涂层和基体在pH=2.5的3.5%(质量分数)NaCl溶液中的腐蚀行为,并研究涂层的失效机制.结果 在304不锈钢表面沉积了厚约1μm且均匀、致密的TiN涂层.极化曲线分析表明,基体和TiN涂层试样出现了自钝化和点蚀现象,其中304不锈钢基体的腐蚀电位为-0.41 V,腐蚀电流密度为8.01×10-6 A/cm2,与之相比,TiN涂层的腐蚀电位(-0.28V)明显增大,腐蚀电流密度(6.34×10-8 A/cm2)显著降低.电化学噪声分析显示,在浸泡初期,TiN涂层电极电流暂态峰数量较少,强度较大,噪声电阻较低,而随着浸泡时间的延长,其电流暂态峰数量增加,强度降低,噪声电阻明显大于304不锈钢基体.腐蚀形貌观察表明,304不锈钢和TiN涂层表面均出现了点蚀.结论 TiN涂层能够明显改善基体的耐蚀性能.TiN涂层主要起物理阻碍作用,涂层的主要失效形式是涂层表面的微观缺陷和破裂.  相似文献   

16.
目的提高316L不锈钢的耐腐蚀性能。方法在316L不锈钢样品表面涂覆主要成分为1,2-二(三乙氧基硅基)乙烷(BTSE)的硅烷涂层。通过电化学分析测试,评价涂覆硅烷涂层的316L不锈钢的耐蚀性,并通过扫描电子显微镜和扫描电化学显微镜对其表面形貌进行分析。结果在相同的腐蚀环境下,与未涂覆硅烷涂层的316L不锈钢样品相比,涂覆硅烷涂层样品的表面更加光滑,点蚀现象明显好转。电化学测试结果显示,涂覆硅烷涂层的316L不锈钢样品的腐蚀电位为?565.02m V,未涂覆硅烷涂层样品的腐蚀电位为?796.01 mV,前者明显高于后者,其腐蚀倾向明显减小。另外,涂覆硅烷涂层的316L不锈钢样品的腐蚀电流为2.5177μA,未涂覆硅烷涂层样品的腐蚀电流为5.4291μA,涂覆硅烷涂层样品的腐蚀电流明显更小,表现出了更好的耐腐蚀性能。通过观察扫描电化学显微镜图像可以得出,未涂覆硅烷涂层的316L不锈钢样品的电流范围为?3.144×10?9~?1.957×10?9 A,涂覆硅烷涂层的316L不锈钢样品的电流范围为?3.004×10?9~?1.975×10?9A,涂覆硅烷涂层样品的电流范围更窄,腐蚀程度明显减轻。结论在316L不锈钢表面涂覆硅烷涂层可以在一定程度上减缓样品的腐蚀程度,硅烷涂层起到了物理屏障的作用,显着提高了316L不锈钢的耐腐蚀性。  相似文献   

17.
密封体材料在服役工况下易因磨损、腐蚀损伤而导致密封失效。采用在密封体表面制备耐磨涂层的方法可有效提高密封体的耐磨性能。本研究选用40Cr钢为密封体基体材料,WC陶瓷和Ni60+WC陶瓷为涂层材料,采用等离子喷涂的方法制备涂层材料,测试了涂层厚度、硬度,分析了涂层与基体材料的界面结合特性,对基体材料和涂层材料进行了两体磨损试验,分析了试验材料的磨损机理。研究结果表明:WC涂层和Ni60+WC涂层表面硬度高,涂层厚度均超过1 000μm,且与基体间结合良好;与基体40Cr相比较,两种涂层在销盘磨损试验中因高硬度WC陶瓷的存在表现出良好的耐磨性,WC涂层磨损抗力是40Cr基体的1.9倍,Ni60+WC涂层磨损抗力是40Cr基体的2.5倍,且Ni60+WC涂层因含金属Ni致使涂层脆性降低,耐磨性最优。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号