首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The immunity protein Im2 can bind and inhibit the noncognate endonuclease domain of the bacterial toxin colicin E9 with a Kd of 19 nM, 6 orders of magnitude weaker than that of the cognate immunity protein Im9 with which it shares 68% sequence identity. Previous work from our laboratory has shown that the specificity differences of these four-helix immunity proteins is due almost entirely to helix II which is largely variable in sequence in the immunity protein family. From alanine scanning mutagenesis of Im9 in conjunction with high-field NMR data, a dual recognition model for colicin-immunity protein specificity has been proposed whereby the conserved residues of helix III of the immunity protein act as the anchor of the endonuclease binding site while the variable residues of helix II control the specificity of the protein-protein interaction. In this work, we identify three residues (at positions 33, 34, and 38) in helix II which define the specificity differences of Im2 and Im9 for colicin E9 and, using alanine mutagenesis of the putative endonuclease binding surface of Im2, compare the distribution of binding energies for conserved and nonconserved sites in both immunity proteins. This comparison highlights the conserved residues of both Im2 and Im9 as the major determinants of E9 DNase binding energy. Conversely, the nonconserved, specificity-determining residues only contribute to the E9 DNase binding energy in the cognate Im9 protein, while in the noncognate immunity protein Im2, they either destabilize the complex or do not contribute to the binding energy. This comparative alanine scan of two immunity proteins therefore supports the dual recognition mechanism of selectivity in colicin-immunity protein interactions and provides a basis for understanding specificity in other protein-protein interaction systems involving structurally conserved protein families.  相似文献   

3.
Platelet-activating factor (PAF) is a potent phospholipid mediator that produces a wide range of biological responses. The PAF receptor is a member of the seven-transmembrane GTP-binding regulatory protein-coupled receptor superfamily. This receptor binds PAF with high affinity and couples to multiple signaling pathways, leading to physiological responses that can be inhibited by various structurally distinct PAF antagonists. We have used site-directed mutagenesis and functional expression studies to examine the role of the Phe97 and Phe98 residues located in the third transmembrane helix and Asn285 and Asp289 of the seventh transmembrane helix in ligand binding and activation of the human PAF receptor in transiently transfected COS-7 cells. The double mutant FFGG (Phe97 and Phe98 mutated into Gly residues) showed a 3-4-fold decrease in affinity for PAF, but not for the specific antagonist WEB2086, when compared with the wild-type (WT) receptor. The FFGG mutant receptor, however, displayed normal agonist activation, suggesting that these two adjacent Phe residues maintain the native PAF receptor conformation rather than interacting with the ligand. On the other hand, substitution of Ala for Asp289 increased the receptor affinity for PAF but abolished PAF-dependent inositol phosphate accumulation; it did not affect WEB2086 binding. Substitution of Asn for Asp289, however, resulted in a mutant receptor with normal binding and activation characteristics. When Asn285 was mutated to Ala, the resulting receptor was undistinguishable from the WT receptor. Surprisingly, substitution of Ile for Asn285 led to a loss of ligand binding despite normal cell surface expression levels of this mutant, as verified by flow cytometric analysis. Our data suggest that residues 285 and 289 are determinant in the structure and activation of the PAF receptor but not in direct ligand binding, as had been recently proposed in a PAF receptor molecular model.  相似文献   

4.
Pestiviruses are the only members of the Flaviviridae that encode a nonstructural protease at the N terminus of their polyproteins. This N-terminal protease (Npro) cleaves itself off of the nascent polyprotein autocatalytically and thereby generates the N terminus of the adjacent viral capsid protein C. In previous reports, sequence similarities between Npro and the catalytic residues of papain-like cysteine proteases were put forward. To test this hypothesis, substitutions of cysteine and histidine residues within Npro were carried out by site-directed mutagenesis. Translation of the mutagenized Npro-C proteins in cell-free lysates confirmed that only the predicted Cys69 was an essential amino acid for proteolysis, not His130. Further essential residues were identified with His49 and Glu22. While it remains speculative whether Glu22-His49-Cys69 actually build a catalytic triad, these results invalidate the assumption that Npro is a papain-like cysteine protease.  相似文献   

5.
To elucidate the minimum requirement of amino acid residues for the active center in human adenylate kinase (hAK1), we carried out random site-directed mutagenesis of key lysine residues (K9, K21, K27, K31, K63, K131, and K194), which were conserved in mammalian AK1 species, with the pMEX8-hAK1 plasmid [Ayabe, T., et al. (1996) Biochem. Mol. Biol. Int. 38, 373-381]. Twenty different mutants were obtained and analyzed by steady-state kinetics, and all mutants showed activity loss by Km and/or k(cat) effects on MgATP2-, AMP2-, or both. The results have led to the following conclusions. (1) Lys9 would appear to interact with both MgATP2- and AMP2- but to a larger extent than with AMP2-. (2) Lys21 is likely to play a role in substrate binding of both MgATP2- and AMP2- but more strongly affects MgATP2-. (3) Lys27 and Lys131 would appear to play a functional role in catalysis by interacting strongly with MgATP2-. (4) Lys31 would appear to interact with MgATP2- and AMP2- at the MgATP2- site. (5) Lys63 would be more likely to interact with MgATP2- than with AMP2-. (6) Lys194 in the flanking C-terminal domain would appear to interact not only with MgATP2- but also with AMP2- at the MgATP2- site by stabilizing substrate binding. The loss of the positively charged epsilon-amino group of lysine affects both the affinity for the substrate and the catalytic efficiency. Hence, hydrophilic lysine residues in hAK1 would appear to be essential for substrate-enzyme interaction with the coordination of some arginine residues, reported previously [Kim, H. J., et al. (1990) Biochemistry 29, 1107-1111].  相似文献   

6.
Transmembrane span 7 of the rat brain serotonin transporter was subjected to random mutagenesis. Of the 27 amino acid residues mutated, six were identified as functionally important by their sensitivity to nonconservative mutations. These residues were Asn-368 and Tyr-385, where substitutions that retained hydrogen-bonding ability were preferred; Gly-376 and Gly-384, where only glycine was accepted; Phe-380, where a phenyl ring was preferred; and Met-386, where hydrophobic substitutions were preferred. Mutations that did not preserve these structural characteristics were highly detrimental to serotonin transport activity. These six residues form a stripe that runs at an angle down the side of the putative alpha-helix, lending support to this structural prediction. Mutations at some of these positions also specifically impaired transport activity under low Na+ conditions. Other mutations at nearby positions in transmembrane span 7 also impaired activity in low Na+, although the activity of the mutants in high Na+ was similar to wild type. These results suggest that at least some of the six critical residues play a role in Na+ binding or perhaps in the coupling of Na+ binding to later steps in the transport cycle. These residues may be important in other aspects of the transporter's function as well.  相似文献   

7.
The third intracellular loop (i3) plays a critical role in the coupling of many receptors to G-proteins. In muscarinic receptor subtypes, the N- and C-terminal regions (Ni3 and Ci3) of this loop are sufficient to direct appropriate G-protein coupling. The relative functional contributions of all amino acids within Ni3 was evaluated by constructing libraries of m5 muscarinic receptors containing random mutations in Ni3 and screening them using high throughput assays based on ligand-dependent transformation of NIH 3T3 cells. In receptors that retained a wild type phenotype, the pattern of functionally tolerated substitutions is consistent with the presence of three turns of an alpha helix extending from the transmembrane domain. All of the amino acid positions that tolerate radical substitutions face away from a conserved hydrophobic face that ends with an arginine, and helix-disrupting proline substitutions were not observed. All of the mutant receptors with significantly compromised phenotypes had amino acid substitutions in residues predicted to form the hydrophobic face. Similar data from the Ci3 region (Burstein, E. S., Spalding, T. A., Hill-Eubanks, D., and Brann, M. R. (1995) J. Biol. Chem. 270, 3141-3146) are consistent with the presence of a single helical turn extending from the transmembrane domain, with an alanine that defines G-protein affinity. Functionally critical residues of Ni3 and Ci3 are predicted to be in close proximity where they form the G-protein-coupling domain.  相似文献   

8.
The site-directed mutagenesis of a number of proposed active site residues of 5-enolpyruvyl shikimate-3-phosphate (EPSP) synthase is reported. Several of these mutations resulted in complete loss of enzyme activity indicating that these residues are probably involved with catalysis, notably K22R, K411R, D384A, R27A, R100A, and D242A. Of those, K22R, R27A, and D384A did not bind either the substrate shikimate-3-phosphate (S3P) or glyphosate (GLP). The K411R and D242A mutants bind S3P only in the presence of GLP. The kinetic characterization of mutants R100K, K340R, and E418A, which retain activity, is reported. Of those, R100K and K340R do not accumulate enzyme intermediate of enzyme-bound product under equilibrium conditions. These residues, while not essential for catalysis, are most likely important for substrate binding. All of the mutants are shown to be correctly folded by NMR spectroscopy.  相似文献   

9.
The style component of the self-incompatibility (S) locus of the wild tomato Lycopersicon peruvianum (L.) Mill. is an allelic series of glycoproteins with ribonuclease activity (S-RNases). Treatment of the S3-RNase from L. peruvianum with iodoacetate at pH 6.1 led to a loss of RNase activity. In the presence of a competitive inhibitor, guanosine 3'-monophosphate (3'-GMP), the rate of RNase inactivation by iodoacetate was reduced significantly. Analysis of the tryptic digestion products of the iodoacetate-modified S-RNase by reversed-phase high-performance liquid chromatography and electrospray-ionization mass spectrometry showed that histidine-32 was preferentially modified in the absence of 3'-GMP. Histidine-88 was also modified, but this occurred both in the presence and absence of 3'-GMP, suggesting that this residue is accessible when 3'-GMP is in the active site. Cysteine-150 was modified by iodoacetate in the absence of 3'-GMP and, to a lesser extent, in its presence. The results are discussed with respect to the related fungal RNase T2 family and the mechanism of S-RNase action.  相似文献   

10.
Nitrate reductase of Neurospora crassa is a complex multi-redox protein composed of two identical subunits, each of which contains three distinct domains, an amino-terminal domain that contains a molybdopterin cofactor, a central heme-containing domain, and a carboxy-terminal domain which binds a flavin and a pyridine nucleotide cofactor. The flavin domain of nitrate reductase appears to have structural and functional similarity to ferredoxin NADPH reductase (FNR). Using the crystal structure of FNR and amino acid identities in numerous nitrate reductases as guides, site-directed mutagenesis was used to replace specific amino acids suspected to be involved in the binding of the flavin or pyridine nucleotide cofactors and thus important for the catalytic function of the flavin domain. Each mutant flavin domain protein was expressed in Escherichia coli and analyzed for NADPH: ferricyanide reductase activity. The effect of each amino acid substitution upon the activity of the complete nitrate reductase reaction was also examined by transforming each manipulated gene into a nit-3- null mutant of N. crassa. Our results identify amino acid residues which are critical for function of the flavin domain of nitrate reductase and appear to be important for the binding of the flavin or the pyridine nucleotide cofactors.  相似文献   

11.
The time course for inhibition of proline transport and irreversible loss of cell viability after treatment with colicin E1 was measured as a function of temperature between 13 and 33 degrees C, using a thermostatted flow dialysis system. Complete inhibition of proline transport at 33 and 13 degrees C occurred in 0.5 min and 3 to 5 min, respectively, after addition of colicin E1 at an effective multiplicity of about 4. At these times, the fractional cell survival, assayed by dilution directly from the flow dialysis vessel into trypsin, ranged from 35 to 80%, with viability always greater than 50% at the lower incubation temperatures. Further studies were carried out at 15 degrees C. Complete inhibition of proline transport, which required 2 to 3 min, occurred much more rapidly at 15 degrees C than did the decay of trypsin rescue, which required 10 to 15 min to reach a survival level of 10 to 20%. The direct addition of trypsin to the flow dialysis vessel, after an addition of colicin E1 that caused complete inhibition of proline or glutamine transport, resulted in restoration of net transport. The restored level was typically about 40% of the control rate, and was very similar to the fractional cell viability measured after incubation in trypsin in the same vessel. It is concluded that trypsin can restore active transport to a significant fraction of a cell population in which transport has been initially inhibited by colicin E1.  相似文献   

12.
The type I restriction and modification enzymes do not possess obvious DNA-binding motifs within their target recognition domains (TRDs) of 150-180 amino acids. To identify residues involved in DNA recognition, changes were made in the amino-TRD of EcoKI by random mutagenesis. Most of the 101 substitutions affecting 79 residues had no effect on the phenotype. Changes at only seven positions caused the loss of restriction and modification activities. The seven residues identified by mutation are not randomly distributed throughout the primary sequence of the TRD: five are within the interval between residues 80 and 110. Sequence analyses have led to the suggestion that the TRDs of type I restriction enzymes include a tertiary structure similar to the TRD of the HhaI methyltransferase, and to a model for a DNA-protein interface in EcoKI. In this model, the residues within the interval identified by the five mutations are close to the protein-DNA interface. Three additional residues close to the DNA in the model were changed; each substitution impaired both activities. Proteins from twelve mutants were purified: six from mutants with partial or wild-type activity and six from mutants lacking activity. There is a strong correlation between phenotype and DNA-binding affinity, as determined by fluorescence anisotropy.  相似文献   

13.
Mapping of the conserved sequence regions in the restriction endonucleases MunI (C/AATTG) and EcoRI (G/AATTC) to the known X-ray structure of EcoRI allowed us to identify the sequence motif 82PDX14EXK as the putative catalytic/Mg2+ ion binding site of MunI [Siksnys, V., Zareckaja, N., Vaisvila, R., Timinskas, A., Stakenas, P., Butkus, V., & Janulaitis, A. Gene (1994) 142, 1-8]. Site-directed mutagenesis was then used to test whether amino acids P82, D83, E98, and K100 were important for the catalytic activity of MunI. Mutation P82A generated only a marginal effect on the cleavage properties of the enzyme. Investigation of the cleavage properties of the D83, E98, and K100 substitution mutants, however, in vivo and in vitro, revealed either an absence of catalytic activity or markedly reduced catalytic activity. Interestingly, the deleterious effect of the E98Q replacement in vitro was partially overcome by replacement of the metal cofactor used. Though the catalytic activity of the E98Q mutant was only 0.4% of WT under standard conditions (in the presence of Mg2+ ions), the mutant exhibited 40% of WT catalytic activity in buffer supplemented with Mn2+ ions. Further, the DNA binding properties of these substitution mutants were analyzed using the gel shift assay technique. In the absence of Mg2+ ions, WT MunI bound both cognate DNA and noncognate sequences with similar low affinities. The D83A and E98A mutants, in contrast, in the absence of Mg2+ ions, exhibited significant specificity of binding to cognate DNA, suggesting that the substitutions made can simulate the effect of the Mg2+ ion in conferring specificity to the MunI restriction enzyme.  相似文献   

14.
1H-1H, 1H-15N, and 1H-1H-15N multidimensional NMR spectroscopic studies of the 86 amino acid protein that provides immunity against the DNase action of colicin E9 are reported. Through a combination of 2D NOESY and TOCSY and 3D TOCSY-HMQC, NOESY-HMQC, and HMQC-NOESY-HMQC experiments, almost complete 1H NMR and backbone 15N NMR assignments have been obtained, and the secondary structure of the protein has been partially elucidated. Approximately 50% of the protein forms three helices. The specificity determining region of the DNase immunity protein, identified from previously reported biochemical studies to include residues 32-40, is helical, indicating that the protein-protein interaction involves residues from at least one helix.  相似文献   

15.
Pyridine nucleotide transhydrogenase (EC 1.6.1.1) from Escherichia coli was investigated with respect to the role of glutamic and aspartic acid residues reactive to N,N'-dicyclohexylcarbodiimide (DCCD) and potentially involved in the proton-pumping mechanism of the enzyme. The E. coli transhydrogenase consists of an alpha (510 residues) and a beta (462 residues) subunit. DCCD reacts with the enzyme to inhibit catalytic activity and proton pumping. This reagent modifies Asp alpha 232, Glu alpha 238, and Glu alpha 240 as well as amino acid residue(s) in the beta subunit. Using the cloned and overexpressed E. coli transhydrogenase genes (Clarke, D. M., and Bragg, P. D. (1985) J. Bacteriol. 162, 367-373), Asp alpha 232 and Glu alpha 238 were replaced independently by site-specific mutagenesis. In addition, Asp alpha 232, Glu alpha 238, and Glu alpha 240 were replaced to generate triple mutants. The specific catalytic activities of the mutant transhydrogenases alpha D232N, alpha D232E, alpha D232K, alpha D232H, alpha E238K, and alpha E238Q as well as of the triple mutants alpha D232N, alpha E238Q, alpha E240Q and alpha D232H, alpha E238Q, alpha E240Q were in the range of 40-90% of the wild-type activity. Proton-pumping activity was present in all mutants. Examination of the extent of subunit modification by [14C]DCCD revealed that the label was still incorporated into both alpha and beta subunits in the Asp alpha 232 mutants, but that the alpha subunit was not labeled in the triple mutants. Catalytic and proton-pumping activities were nearly insensitive to DCCD in the triple mutants. This suggests that loss of catalytic and proton-pumping activities is associated with modification of the aspartic and glutamic acid residues of the alpha subunit. In the presence of the substrate NADPH, the rate of modification of the beta subunit by [14C]DCCD was increased, and there was a greater extent of enzyme inactivation. By contrast, NADH and 3-acetylpyridine-NAD+ protected the catalytic activity of the transhydrogenase from inhibition by DCCD. The protection was particularly marked in the E238Q and E238K mutants. It is concluded that the Asp alpha 232, Glu alpha 238, and Glu alpha 240 residues are not essential for catalytic activity or proton pumping. The inactivation by DCCD is likely due to the introduction of a sterically hindering group that reacts with the identified acidic residues close to the NAD(H)-binding site.  相似文献   

16.
A putative membrane-interacting domain of CTP:phosphocholine cytidylyltransferase (CT) was identified using two peptide-specific antibodies. One antibody (SA2) was raised against the N-terminus of CT (amino acid residues 1-17) and the other antibody (SA209) against an alpha-helical domain of the enzyme (amino acid residues 247-257). Both antibodies quantitatively immunoprecipitated CT from rat liver cytosol and showed specificity towards CT when octylglucoside extracts of rat liver cytosol were assessed by Western blot analysis. However, further experiments revealed that the antibodies had different characteristics. Whereas the antibody directed against the N-terminus of CT (SA2) did not influence CT/membrane interaction, the new antibody (SA209) against the alpha-helical domain of the enzyme interfered with this interaction. Our results provide experimental evidence that the alpha-helical domain (amino acid residues 228-287) of CT may serve as a membrane-interacting domain.  相似文献   

17.
The modulation of the electron-transfer properties of human medium-chain acyl-CoA dehydrogenase (hwtMCADH) has been studied using wild-type and site-directed mutants by determining their midpoint potentials at various pH values and estimating the involved pKs. The mutants used were E376D, in which the negative charge is retained; E376Q, in which one negative charge (pKa approximately 6. 0) is removed from the active center; E99G, in which a different negative charge (pKa approximately 7.3) also is affected; and E376H (pKa approximately 9.3) in which a positive charge is present. Em for hwtMCADH at pH 7.6 is -0.114 V. Results for the site-directed mutants indicate that loss of a negative charge in the active site causes a +0.033 V potential shift. This is consistent with the assumption that electrostatic interactions (as in the case of flavodoxins) and specific charges are important in the modulation of the electron-transfer properties of this class of dehydrogenases. Specifically, these charge interactions appear to correlate with the positive Em shift observed upon binding of substrate/product couple to MCADH [Lenn, N. D., Stankovich, M. T., and Liu, H. (1990) Biochemistry 29, 3709-3715], which coincides with a pK increase of Glu376-COOH from approximately 6 to 8-9 [Rudik, I., Ghisla, S., and Thorpe, C. (1998) Biochemistry 37, 8437-8445]. From the pH dependence of the midpoint potentials of hwtMCADH two mechanistically important ionizations are estimated. The pKa value of approximately 6.0 is assigned to the catalytic base, Glu376-COOH, in the oxidized enzyme based on comparison with the pH behavior of the E376H mutant, it thus coincides with the pK value recently estimated [Vock, P., Engst, S., Eder, M., and Ghisla, S. (1998) Biochemistry 37, 1848-1860]. The pKa of approximately 7.1 is assigned to Glu376-COOH in reduced hwtMCADH. Comparable values for these pKas for Glu376-COOH in pig kidney MCADH are pKox = 6.5 and pKred = 7.9. The Em measured for K304E-MCADH (a major mutant resulting in a deficiency syndrome) is essentially identical to that of hwtMCADH, indicating that the disordered enzyme has an intact active site.  相似文献   

18.
Guanine nucleotide exchange factors in the Dbl family activate Rho GTPases by accelerating dissociation of bound GDP, promoting acquisition of the GTP-bound state. Dbl proteins possess a approximately 200 residue catalytic Dbl-homology (DH) domain, that is arranged in tandem with a C-terminal pleckstrin homology (PH) domain in nearly all cases. Here we report the solution structure of the DH domain of human PAK-interacting exchange protein (betaPIX). The domain is composed of 11 alpha-helices that form a flattened, elongated bundle. The structure explains a large body of mutagenesis data, which, along with sequence comparisons, identify the GTPase interaction site as a surface formed by three conserved helices near the center of one face of the domain. Proximity of the site to the DH C-terminus suggests a means by which PH-ligand interactions may be coupled to DH-GTPase interactions to regulate signaling through the Dbl proteins in vivo.  相似文献   

19.
Thermal stability of the pore-forming domain of colicin A was studied by high sensitivity differential scanning calorimetry and circular dichroism spectroscopy. In the pH range between 8 and 5, the thermal denaturation of the protein in solution occurs at 66-69 degrees C and is characterized by the calorimetric enthalpy of approximately 90 kcal/M. At pH below 5, there is a rapid pH-dependent destabilization of the pore-forming domain resulting in the lowering of the midpoint denaturation temperature and a decrease in the calorimetric enthalpy of denaturation. Circular dichroism spectra in the near and far ultraviolet show that the thermotropic transition is associated with collapse of the native tertiary structure of the pore-forming domain, although a large proportion of the helical secondary structure remains preserved. The present data indicate some similarity also between acid-induced and temperature-induced denaturation of the pore-forming domain of colicin A. Association of the pore-forming domain with phospholipid vesicles of dioleoylphosphatidylglycerol results in total disappearance of the calorimetric transition, even at pH values as high as 7. Since lipid binding also induces collapse of the near ultraviolet circular dichroism spectrum, these data indicate that interaction with the membrane facilitates a conformational change within the pore-forming domain to a looser (denaturated-like) state. These findings are discussed in relation to the recent model (van der Goot, F. G., Gonzalez-Manas, J. M., Lakey, J. H., Pattus, F. (1991) Nature 354, 408-410) which postulates that a flexible "molten globule" state is an intermediate on the pathway to membrane insertion of colicin A.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号