首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have performed electron initiated avalanche noise measurements on a range of homojunction InP p+-i-n+ diodes with “i” region widths, w ranging from 2.40 to 0.24 μm. In contrast to McIntyre's noise model a significant reduction in the excess noise factor is observed with decreasing w at a constant multiplication in spite of α, the electron ionization coefficient being less than β, the hole ionization coefficient. In the w=0.24 μm structure an effective β/α ratio of approximately 0.4 is deduced from the excess noise factor even when electrons initiate multiplication, suggesting that hole initiated multiplication is not always necessary for the lowest avalanche noise in InP-based avalanche photodiodes  相似文献   

2.
The avalanche multiplication characteristics of Al0.8Ga 0.2As have been investigated in a series of p-i-n and n-i-p diodes with i-region widths, w, varying from 1 μm to 0.025 μm. The electron ionization coefficient, α, is found to be consistently higher than the hole ionization coefficient, β, over the entire range of electric fields investigated. By contrast with AlxGa 1-xAs (x⩽0.6) a significant difference between the electron and hole initiated multiplication characteristics of very thin Al0.8Ga0.2As diodes (w=0.025 μm) was observed. Dead space effects in the diodes with w⩽0.1 μm were found to reduce the multiplication at low bias below the values predicted from bulk ionization coefficients. Effective α and β that are independent of w have been deduced from measurements and are able to reproduce accurately the multiplication characteristics of diodes with w⩾0.1 μm and breakdown voltages of all diodes with good accuracy. By performing a simple correction for the dead space, the multiplication characteristics of even thinner diodes were also predicted with reasonable accuracy  相似文献   

3.
4.
Avalanche noise measurements have been performed on a range of homojunction GaAs p+-i-n+ and n+-i-p + diodes with “i” region widths, ω from 2.61 to 0.05 μm. The results show that for ω⩽1 μm the dependence of excess noise factor F on multiplication does not follow the well-established continuous noise theory of McIntyre [1966]. Instead, a decreasing noise factor is observed as ω decreases for a constant multiplication. This reduction in F occurs for both electron and hole initiated multiplication in the thinner ω structures even though the ionization coefficient ratio is close to unity. The dead-space, the minimum distance a carrier must travel to gain the ionization threshold energy, becomes increasingly important in these thinner structures and largely accounts for the reduction in noise  相似文献   

5.
The electron and hole multiplication coefficients, Me and Mh, respectively, have been measured in thin GaAs homojunction PIN and NIP diodes and from conventional ionization analysis the effective electron and hole ionization coefficients, α and β, respectively, have been determined. The nominal intrinsic region thickness w of these structures ranges from 1.0 μm down to 25 nm. In the thicker structures, bulk-like behavior is observed; however, in the thinner structures, significant differences are found. As the i-regions become thinner and the electric fields increase, the Me/Mh ratio is seen to approach unity. The experimental results are modeled and interpreted using a semianalytical solution of the Boltzmann equation. In thin (w⩽0.1 μm) devices the dead space effect reduces effective ionization coefficients below their bulk values at low values of carrier multiplication. However, overshoot effects compensate for this at extremely high fields (⩾1×103 kV/cm)  相似文献   

6.
An a-Si/SiC:H superlattice avalanche photodiode (SAPD) has been successfully fabricated on an ITO/glass substrate by plasma-enhanced chemical vapor deposition. The room-temperature electron and hole impact ionization rates, α and β, have been determined for the a-Si/SiC:H superlattice structure by photocurrent multiplication measurements. The ratio α/β is 6.5 at a maximum electric field of 2.08×105 V/cm. Avalanche multiplications in the superlattice layer yields an optical gain of 184 at a reverse bias VR=20 V and an incident light power Pin=5 μW. An LED-SAPD photocouple exhibited a switching time of 4.5 μs at a load resistance R-1.8 kΩ  相似文献   

7.
In the present paper, we calculate the potential, field, and carrier distributions in short n+-n--n+and n+-p--n+devices and estimate the low-field resistance. The results of the calculations present a set of universal curves which may be used to find the minimum carrier density in the sample, the barrier height, the electric field at the boundary, etc. Our calculations show that electron injection becomes very important when the doping level is smaller than 1.5 × 1014(cm-3). (T/300 K)/ L2(µm) for GaAs diodes, whereLis the sample length. The low-field resistance of the sample is limited by the thermionic emission of the sample and by the diffusion and drift in the sample. The thermionic emission dominates at low temperatures, in short samples, and the diffusion-drift dominates in longer samples at higher temperatures. The experimental values of low-field resistance for GaAs 0.4-µm n+-n--n+devices at 77 and 300 K are in good agreement with the predicted values. The agreement is not so good for 0.25-µm devices and for n+-p--n+devices. In the latter case, the disagreement may be due to uncertainty in the doping level because the low-field resistance of the n+-p--n+structure is shown to be very sensitive to the doping level of the p-region.  相似文献   

8.
A Monte Carlo (MC) model has been used to estimate the excess noise factor in thin p+-i-n+ GaAs avalanche photodiodes (APD's). Multiplication initiated both by pure electron and hole injection is studied for different lengths of multiplication region and for a range of electric fields. In each ease a reduction in excess noise factor is observed as the multiplication length decreases, in good agreement with recent experimental measurements. This low noise behavior results from the higher operating electric field needed in short devices, which causes the probability distribution function for both electron and hole ionization path lengths to change from the conventionally assumed exponential shape and to exhibit a strong dead space effect. In turn this reduces the probability of higher order ionization events and narrows the probability distribution for multiplication. In addition, our simulations suggest that fur a given overall multiplication, electron initiated multiplication in short devices has inherently reduced noise, despite the higher feedback from hole ionization, compared to long devices  相似文献   

9.
The authors describe the electrical and optical characterization of three Hg1-xCdxTe avalanche photodiodes manufactured using planar technology with composition parameter x near 0.6. This alloy composition leads to devices that are well suited for 1.55-μm detection. From the noise analysis under multiplication, the authors show the tight dependence of the ratio β/α (of the hole; and electron ionization coefficient, respectively) upon x and the ratio Δ/Eg where Δ is the spin-orbit splitting energy and E g is the bandgap energy. It turns out that in these alloys around x=0.6, Δ is very close to the bandgap energy so β/α reaches its maximum value. Owing to this property, which is characteristic of II-VI compounds, Hg1-xCdxTe is a good candidate for 1.3-μm to 1.6-μm avalanche photodiodes  相似文献   

10.
The Monte Carlo method is used to analyze impact ionization rates for electrons and holes in a 〈100〉 crystal direction In0.52Al0.48As-In0.53Ga0.47 As square and graded barrier superlattice. The calculated impact ionization rate ratio α/β is enhanced to more than 10 in a wide barrier and narrow-well square barrier superlattice. This is because the hole ionization rate β is greatly reduced in the narrower well superlattice, while the electron ionization rate α is less sensitive to well and barrier layer thickness. These results are explained by a combination of the ionization dead space effect for the barrier layer and the electron ionization rate enhancement in the well layer due to large conduction band edge discontinuity. Furthermore, it is found that in a graded barrier superlattice, the impact ionization rate ratio α/β is smaller than that for a square barrier superlattice having the same barrier and well thickness. This is due to the occurrence of hole ionization in the narrow bandgap region in graded barriers. The band structure effects on hot carrier energy distribution, as well as impact ionization, are also discussed  相似文献   

11.
The spectral response and impact ionization coefficient ratio of Si1-xGex have been determined. Measurements were made on p+-i-n+ diodes grown by solid/gas source molecular beam epitaxy. The diodes are characterized by reverse breakdown voltages of 4-12 V and dark currents of 20-170 pA/μm2 . The long wavelength cut-off of the diodes increases from 1.2 μm to 1.6 μm as x increases from 0.08 to 1.0 with a maximum responsivity of 0.5 A/W in all the diodes tested. The ratio α/β varies from 3.3 to 0.3 in the same composition range, with α/β=1 at x≅0.45. These results have important implications in the use of this material system in various photodetection applications  相似文献   

12.
Avalanche multiplication and excess noise arising from both electron and hole injection have been measured on a series of In0.52Al0.48As p+-i-n+ and n +-i-p+ diodes with nominal avalanche region widths between 0.1 and 2.5 mum. With pure electron injection, low excess noise was measured at values corresponding to effective k=beta/alpha between 0.15 and 0.25 for all widths. Enabled ionization coefficients were deduced using a non-local ionization model utilizing recurrence equation techniques covering an electric field range from approximately 200 kV/cm to 1 MV/cm  相似文献   

13.
Avalanche multiplication and excess noise were measured on a series of Al0.6Ga0.4As p+in+ and n+ip+ diodes, with avalanche region thickness, w ranging from 0.026 μm to 0.85 μm. The results show that the ionization coefficient for electrons is slightly higher than for holes in thick, bulk material. At fixed multiplication values the excess noise factor was found to decrease with decreasing w, irrespective of injected carrier type. Owing to the wide Al0.6Ga0.4As bandgap extremely thin devices can sustain very high electric fields, giving rise to very low excess noise factors, of around F~3.3 at a multiplication factor of M~15.5 in the structure with w=0.026 μm. This is the lowest reported excess noise at this value of multiplication for devices grown on GaAs substrates. Recursion equation modeling, using both a hard threshold dead space model and one which incorporates the detailed history of the ionizing carriers, is used to model the nonlocal nature of impact ionization giving rise to the reduction in excess noise with decreasing w. Although the hard threshold dead space model could reproduce qualitatively the experimental results, better agreement was obtained from the history-dependent model  相似文献   

14.
The electron impact ionization rate (α) and breakdown voltage (VBD) experimentally measured in a p+ -i-n+ diode structure with a GaAs/Ga0.7Al 0.3As multiple quantum-well (MQW) i region are discussed. For structures with GaAs wells of 100 Å and barriers that vary from 7 to 60 Å in thickness, it is found that α is always less than α in bulk GaAs and that it decreases with increasing barrier thickness. The normalized VBD also increases with increasing barrier thickness, confirming a decreasing ionization rate  相似文献   

15.
The hole multiplication factor in pnp InAlAs/InGaAs single heterojunction bipolar transistors (HBTs) has been measured as a function of the base-collector bias. The hole impact ionization coefficient βp has been estimated taking into account the Early effect, ICBO, and thermal effects. Numerical corrections for dead space were made. The importance of considering second order effects is highlighted, showing that rough approximations can lead to an overestimation of the coefficient βp. At low electric fields, the extracted coefficient agrees with the most recent photomultiplication measurements available in the literature. At high electric fields, hole impact ionization coefficient is estimated up to values previously not reported in the literature (βp≈104 cm-1)  相似文献   

16.
The spectroscopic properties of Ho3+ laser channels in KGd(WO4)2 crystals have been investigated using optical absorption, photoluminescence, and lifetime measurements. The radiative lifetimes of Ho3+ have been calculated through a Judd-Ofelt (JO) formalism using 300-K optical absorption results. The JO parameters obtained were Ω2=15.35×10-20 cm2, Ω 4=3.79×10-20 cm2, Ω6 =1.69×10-20 cm2. The 7-300-K lifetimes obtained in diluted (8·1018 cm-3) KGW:0.1% Ho samples are: τ(5F3)≈0.9 μs, τ( 5S2)=19-3.6 μs, and τ(5F5 )≈1.1 μs. For Ho concentrations below 1.5×1020 cm-3, multiphonon emission is the main source of non radiative losses, and the temperature independent multiphonon probability in KGW is found to follow the energy gap law τph -1(0)=βexp(-αΔE), where β=1.4×10-7 s-1, and α=1.4×103 cm. Above this holmium concentration, energy transfer between Ho impurities also contributes to the losses. The spectral distributions of the Ho3+ emission cross section σEM for several laser channels are calculated in σ- and π-polarized configurations. The peak a σEM values achieved for transitions to the 5I8 level are ≈2×10-20 cm2 in the σ-polarized configuration, and three main lasing peaks at 2.02, 2.05, and 2.07 μm are envisaged inside the 5I75I8 channel  相似文献   

17.
In this paper, the I-V characteristics of silicon n+-n --n+ diode are investigated as a parameter of the length of the n- region. This diode with shorter n- region than 1 μm has the ohmic characteristics until reaching high electric field in spite of the existence of numerous space-charges in the n- region, for the first time in this report. This conductance of the diode is inversely proportional to the third power of the length of the n- region. The experimental results are in good agreement with an analytical calculation including the diffusion term of carriers injected from the n+ regions to the n- region. However, the diode with longer n- region than 2 μm shows the space-charge-limited conduction which is the same as earlier reports  相似文献   

18.
Impact ionization is a major limiting factor to the maximum operating voltage of InGaAs-based, high-speed transistors. In this work, data on the positive temperature dependence of the electron impact ionization coefficient αn in In0.53Ga0.47As at medium-low electric fields are reported for the first time. The increase of αn with temperature is opposite to the behavior normally observed in most semiconductors. This anomalous behavior implies the onset of a positive feedback between power dissipation and avalanche generation which may adversely affect the power handling capability of In0.53Ga 0.47As-based devices, and which should be taken into account in device thermal modeling. In the experimental procedure, based on the measurement of the multiplication factor M-1 in npn In0.53Ga 0.47As/InP Heterojunction Bipolar Transistors (HBT), particular care has been taken in order to rule out possible spurious, temperature-dependent contributions to the measured multiplication current  相似文献   

19.
In order to improve the performance of the a(amorphous)-Si:H/SiC:H superlattice avalanche photodiode (APD), a-Si:H/SiC:H superlattice reach-through APDs (SRAPDs) have been fabricated on ITO(indium tin oxide)/glass substrates by plasma-enhanced chemical vapor deposition (PECVD). For a typical electron-injection SRAPD, the ratio of room-temperature electron and hole impact ionization rates (α/β) is 10.2 at an electric field 3.33×106 V/cm, the optical gain is 506 at an applied reverse-bias VR=18 V and an incident power Pin=5 μW emitted from a He-Ne laser, the rise time is 1 μs at a load resistance RL 1 kΩ, and the excess noise factor is 6.53 at a multiplication M=48  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号