共查询到20条相似文献,搜索用时 15 毫秒
1.
Beaulac R Archer PI Liu X Lee S Salley GM Dobrowolska M Furdyna JK Gamelin DR 《Nano letters》2008,8(4):1197-1201
The photoluminescence of colloidal Mn2+-doped CdSe nanocrystals has been studied as a function of nanocrystal diameter. These nanocrystals are shown to be unique among colloidal doped semiconductor nanocrystals reported to date in that quantum confinement allows tuning of the CdSe bandgap energy across the Mn2+ excited-state energies. At small diameters, the nanocrystal photoluminescence is dominated by Mn 2+ emission. At large diameters, CdSe excitonic photoluminescence dominates. The latter scenario has allowed spin-polarized excitonic photoluminescence to be observed in colloidal doped semiconductor nanocrystals for the first time. 相似文献
2.
Islam MA 《Nanotechnology》2008,19(25):255708
The nanocrystal quantum dot (NQD) charge states strongly influence their electrical transport properties in photovoltaic and electroluminescent devices, optical gains in NQD lasers, and the stability of the dots in thin films. We report a unique electrostatic nature of CdSe NQDs, studied by electrophoretic methods. When we submerged a pair of metal electrodes, in a parallel plate capacitor configuration, into a dilute solution of CdSe NQDs in hexane, and applied a DC voltage across the pair, thin films of CdSe NQDs were deposited on both the positive and the negative electrodes. Extensive characterizations including scanning electron microscopy (SEM), atomic force microscopy (AFM), Fourier transform infrared (FTIR) and Raman studies revealed that the films on both the positive and the negative electrodes were identical in every respect, clearly indicating that: (1)?a fraction (<1%) of the CdSe NQDs in free form in hexane solution are charged and, more importantly, (2)?there are equal numbers of positive and negative CdSe NQDs in the hexane solution. Experiments also show that the number of deposited dots is at least an order of magnitude higher than the number of initially charged dots, indicating regeneration. We used simple thermodynamics to explain such amphoteric nature and the charging/regeneration of the CdSe NQDs. 相似文献
3.
Using atomistic, semiempirical pseudopotential calculations, we show that if one assumes the simplest form of a surface state in a CdSe nanocrystal--an unpassivated surface anion site--one can explain theoretically several puzzling aspects regarding the observed temperature dependence of the radiative decay of excitons. In particular, our calculations show that the presence of surface states leads to a mixing of the dark and bright exciton states, resulting in a decrease of 3 orders of magnitude of the dark-exciton radiative lifetime. This result explains the persistence of the zero-phonon emission line at low temperature, for which thermal population of higher-energy bright-exciton states is negligible. Thus, we suggest that surface states are the controlling factor of dark-exciton radiative recombination in currently synthesized colloidal CdSe nanocrystals. 相似文献
4.
The present work reports synthesis of mercaptoacetic acid capped CdSe nanoparticles soluble in water at different temperatures and with different precursor ratios. This enabled to tune the particle size of QDs from 2.7 to 5.8 nm. The particles consist of nanocrystals; with mixed phase, hexagonal wurtzite as well as sphalerite cubic and are luminescent with quantum yield 10%. The quantum yield up to 20% has been obtained by growing a shell of CdS over the CdSe. HR-TEM images, XRD patterns and the photoluminescence excitation spectra shows epitaxial growth of CdS shell over CdSe and with average size 3.2 ± 1.2 and 4.7 ± 1.2 nm for CdSe and CdSe/CdS quantum dots respectively. FT-IR spectrum and the negative zeta potential value together confirms the attachment of mercaptoacetic acid to the QD surface, where the carboxylic acid group is facing towards solvent and provides stability due to electrostatic hindrance. Further, the QDs are checked for their stability and the luminescence in environments of different pH (4–11 pH). Both CdSe and CdSe/CdS agglomerate with total elimination of fluorescence for 4 pH medium, and no shift in the fluorescence emission peak observed for the 6–9 pH, therefore QDs can be applicable as the fluorescence tags in this specific range of pH. 相似文献
5.
An extracellular biosynthesis method has been developed to prepare cadmium selenide (CdSe) quantum dots (QDs) with strong fluorescence emission by incubating cheap Cd and Se inorganic salts with Escherichia coli (E.coli) bacteria. Ultraviolet–visible absorption spectra, photoluminescence (PL) spectra, and high‐resolution transmission electron microscopy analysis showed that the biosynthesised CdSe QDs have an average size of 3.1 nm, the excellent optical properties with fluorescence emission around 494 nm, and the good crystallinity. It was found that addition of 80 mg of mercaptosuccinic acid resulted in the formation of CdSe QDs with highest PL intensity. Furthermore, Fourier‐transform infrared spectra of as‐synthesised CdSe QDs confirmed the presence of a surface protein capping layer. The biosynthesised CdSe QDs were incorporated into the yeast cells as illustrated by laser confocal scanning microscopy images, showing a great potential in bio‐imaging and bio‐labelling application.Inspec keywords: microorganisms, molecular biophysics, fluorescence, visible spectra, nanofabrication, nanobiotechnology, proteins, cellular biophysics, nanostructured materials, wide band gap semiconductors, cadmium compounds, semiconductor quantum dots, II‐VI semiconductors, transmission electron microscopy, photoluminescence, optical microscopy, ultraviolet spectra, Fourier transform infrared spectra, biological techniques, semiconductor growthOther keywords: biocompatible CdSe quantum dots, extracellular biosynthesis method, cadmium selenide quantum dots, high‐resolution transmission electron microscopy analysis, biosynthesised CdSe QDs, Fourier‐transform infrared spectra, Escherichia coli, ultraviolet‐visible absorption spectra, PL intensity, fluorescence emission, photoluminescence spectra, optical properties, surface protein capping layer, laser confocal scanning microscopy images, bioimaging, biolabelling application, yeast cells, f mercaptosuccinic acid, CdSe 相似文献
6.
《Science and Technology of Advanced Materials》2003,4(6):519-522
A single chromophore detection using video-microscopy is one of the latest methodologies to reveal unique characteristics, which could not be obtained from ensemble measurements. Among many kinds of subjects, dynamic optical properties observed in colloidal semiconductor nanoparticles are attractive and important not only for the basis of photo-physics but also for application studies, e.g. biological labeling, electronic devices. In this study, fluorescence video-microscopy was performed on cadmium selenide (CdSe) quantum dots (QDs) spin-coated on a glass substrate. From single CdSe QDs detection, emissions at wavelengths separated over 60 nm were observed for the first time. This spectral feature was attributed to the existence of double-emissive relaxation processes in CdSe QDs. Photoluminescence intermittency was also observed both from relaxation processes. Fluorescence video-microscopy, which was advanced in biology, can be applicable for the real-time monitoring of dynamic properties in semiconductor photo-physics. 相似文献
7.
We have optimized the low-temperature growth of aligned arrays of zinc oxide nanorods of controlled length and diameter on conductive substrates. Varying the solution concentration and growth time, we were able to tune the nanorod diameter and length in the ranges 40–600 nm and 0.5–15 μm, respectively. The grown zinc oxide nanorods were photosensitized with CdSe quantum dots (QDs) in an oleic shell, which was replaced by pyridine. We studied the optical and transport properties of the ZnO nanorod arrays, with and without CdSe QDs on their surface. The current-voltage characteristics of the ZnO nanorod arrays with CdSe QDs are significantly influenced by illumination with light at a wavelength under the absorption band of the QDs, which points to effective interaction between the QDs and ZnO matrix. 相似文献
8.
In this study, the CdSe nanocrystals were prepared in phenyl ether and octyl amine to investigate the variations of their size, bandgap energy, and photoluminescence with growth time and temperature. The sizes of the CdSe nanocrystals were measured using High Resolution Transmission Electron Microscopy (HRTEM), and found to be nearly monodisperse for relatively low growth temperature, 130 degrees C. Their optic properties were characterized by photoluminescence measurements, which showed that the colors of the nanocrystals could be controlled. The bandgap energies of the nanocrystals were calculated theoretically and found to be in accord with quantum confinement theory. This synthetic method requires only a cheap solvent and offers good reproducibility at a lower price. 相似文献
9.
Recombination dynamics in CdTe/CdSe core-shell type-II quantum dots (QDs) has been investigated by time-resolved photoluminescence (PL) spectroscopy. A very long PL decay time of several hundred nanoseconds has been found at low temperature, which can be rationalized by the spatially separated electrons and holes occurring in a type-II heterostructure. For the temperature dependence of the radiative lifetime, the linewidth and the peak energy of PL spectra show that the recombination of carriers is dominated by delocalized excitons at temperatures below 150?K, while the mixture of delocalized excitons, electrons and holes overwhelms the process at higher temperature. The binding energy of delocalized excitons obtained from the temperature dependence of the non-radiative lifetime is consistent with the theoretical value. The energy dependence of lifetime measurements reveals a third power relationship between the radiative lifetime and the radius of QDs, the light of which can be shed by the quantum confinement effect. In addition, the radiative decay rate is found to be proportional to the square root of excitation power, arising from the change of wavefunction overlap of electrons and holes due to the band bending effect, which is an inherent character of a type-II band alignment. 相似文献
10.
Yuichi Yamasaki Harumi Asami Takashi Isoshima Itaru Kamiya Masahiko Hara 《Science and Technology of Advanced Materials》2013,14(6):519-522
A single chromophore detection using video-microscopy is one of the latest methodologies to reveal unique characteristics, which could not be obtained from ensemble measurements. Among many kinds of subjects, dynamic optical properties observed in colloidal semiconductor nanoparticles are attractive and important not only for the basis of photo-physics but also for application studies, e.g. biological labeling, electronic devices. In this study, fluorescence video-microscopy was performed on cadmium selenide (CdSe) quantum dots (QDs) spin-coated on a glass substrate. From single CdSe QDs detection, emissions at wavelengths separated over 60 nm were observed for the first time. This spectral feature was attributed to the existence of double-emissive relaxation processes in CdSe QDs. Photoluminescence intermittency was also observed both from relaxation processes. Fluorescence video-microscopy, which was advanced in biology, can be applicable for the real-time monitoring of dynamic properties in semiconductor photo-physics. 相似文献
11.
《Journal of Experimental Nanoscience》2013,8(10):787-802
In this study, a method for the detection of C-reactive protein (CRP) using CdSe and CdSe/ZnS quantum dots (QDs) is proposed. CdSe and CdSe/ZnS core-shell QDs are synthesised by using 2-mercaptosuccinic acid (MSA) as a capping agent. These QDs were then subjected to various characterisation studies, namely X-ray diffraction and transmission electron microscope for size and structure, Fourier transform infrared spectroscopy for the confirmation of functional groups, ultraviolet–visible absorption and fluorescence spectroscopy for optical characteristics and dynamic light scattering for hydrodynamic changes of QDs. Two biochemical mixtures were developed: one by mixing blood serum containing CRP and CdSe-phosphorylethanolamine (PEA) and the other by mixing blood serum with CdSe/ZnS-PEA. When these mixtures are observed for fluorescence due to interaction of QDs with CRP, a correlation between changes in fluorescence for different concentrations of CRP is noted. The result demonstrates that CRP can be detected with the help of QDs without using any antibodies. 相似文献
12.
Zeng Q Zhang Y Sun Y Liu X Kong X Zhao J Zhang H 《Journal of nanoscience and nanotechnology》2010,10(11):7311-7315
The green emission semiconductor CdSe quantum dots are successfully encapsulated with lecithoid molecules and transferred into aqueous solution. The liposome-encapsulated CdSe maintain similar emission spectrum properties to free CdSe quantum dots. Fluorescence thermal antiquenching is investigated for the liposome-encapsulated CdSe when the temperature is increased from 20 degrees C to 80 degrees C. The reason of the fluorescence enhancement with increasing the temperature is that the vesicle structure of liposome-encapsulated CdSe becomes the CdSe micell structure over the phase transition temperature of the liposome vesicles, and the corresponding structure variation inducing surface reconstruction of CdSe quantum dots. 相似文献
13.
《中国测试》2017,(11):51-58
量子点是一种新型荧光纳米材料,具有独特而优良的荧光性质,近年来受到研究者的广泛关注。文章综述蛋白质、抗体、肽类以及DNA等对CdSe量子点(CdSe QDs)的表面功能化作用,以及CdSe QDs在生物传感分析中的重要研究进展。具体介绍CdSe量子点的多种合成方法(包括有机相合成、水相合成等),蛋白质、抗体、肽类、DNA利用共价键或静电作用对CdSe量子点修饰方法,以及其在生物医学标记与成像、生物传感、药物载送以及癌症治疗等领域的相关应用,最后针对现有研究的不足进行展望。希望通过对CdSe量子点全方位总结与概述,在一定程度上帮助科研工作者快速、准确了解其相关性质与研究进展。 相似文献
14.
Scanning transmission electron microscopy (STEM) coupled with electron energy loss spectroscopy (EELS) was used to determine the chemical distribution of semiconductor shell material around colloidal core-shell CdSe/ZnS quantum dots (QDs). EELS signals from positions around the QD indicate a well-defined shell of ZnS surrounding the CdSe core, but the distribution of the shell material is highly anisotropic. This nonuniformity may reflect the differences in chemical activity of the crystal faces of the core QD and implies a nonoptimal QD surface passivation. 相似文献
15.
The femtosecond three-pulse photon echo phenomena induced by the optical transition of 1se1sh exciton in a core-shell CdSe/ZnS nanocrystal quantum dot (NQD) are theoretically investigated basing on the optical Bloch equations. The parameter dependence of the photon echo signals is discussed. The numerical calculation results reveal that three-pulse photon echo signals are sensitive to the variation of the size and structure of NQD. The corresponding mechanism has been discussed in terms of quantum size confined effect theory. 相似文献
16.
Dembski S Graf C Krüger T Gbureck U Ewald A Bock A Rühl E 《Small (Weinheim an der Bergstrasse, Germany)》2008,4(9):1516-1526
A study of the influence of the local environment on the light-induced luminescence enhancement of CdSe/ZnS quantum dots (QD) embedded in silica colloids that are dispersed in various solvents is presented. The photoluminescence of the embedded QD is enhanced up to a factor of ten upon photoactivation by ultraviolet or visible light. This enhancement is strongly dependent on the local environment. The thickness-dependent permeability of the silica shell covering the QD controls the influence of the solvent on the QD. If foreign ions are present the activation state is stabilized after termination of the activation, whereas in their absence the process is partially reversible. A new qualitative model for the photoactivation of QD in various environments is developed. It comprises light-induced passivation and subsequent oxidation processes. The embedded QD also retain their fluorescence quantum yield inside living cells. Moreover, they can be activated for many hours in living cells by laser radiation in the visible regime. 相似文献
17.
Klokkenburg M Houtepen AJ Koole R de Folter JW Erné BH van Faassen E Vanmaekelbergh D 《Nano letters》2007,7(9):2931-2936
We show by cryogenic transmission electron microscopy that PbSe and CdSe nanocrystals of various shapes in a liquid colloidal dispersion self-assemble into equilibrium structures that have a pronounced dipolar character, to an extent that depends on particle concentration and size. Analyzing the cluster-size distributions with a one-dimensional (1D) aggregation model yields a dipolar pair attraction of 8-10 kBT at room temperature. This accounts for the long-range alignment of the crystal planes of individual nanocrystals in self-assembled superstructures and for anisotropic nanostructures grown via oriented attachment. 相似文献
18.
《Materials Letters》2007,61(8-9):1641-1644
The cytotoxicity of CdSe quantum dots (QDs) with surface modification was reported first in the paper. CdSe QDs were incorporated into poly (d, l) lactide (PLA) nanoparticles and then surface modified with Fluronic® 68 (F-68), cetyltrimethyl ammonium bromide (CTAB) and sodium dodecyl sulfate (SDS), respectively. Three different particle sizes and zeta potential of the surface modified CdSe QDs were produced using a nano-precipitation method. The cytotoxicity of the surface modified CdSe QDs was evaluated in HepG2 cell model with MTT viability assay. The results showed that the cytotoxicity of the surface modified CdSe QDs in vitro was dependent on the surface properties. Surface modification with F-68 and SDS could lessen the cytotoxicity of CdSe QDs, while surface modification with CTAB showed significant cell damage. CdSe QDs surface modified with F-68 were injected into mice and the fluorescence images in viscus were obtained. The results suggested that CdSe QDs surface modified with F-68 have low cytotoxicity and good potential for biological labeling and imaging applications. 相似文献
19.
This letter demonstrates the use of one of the nucleobases, ‘cytosine’ as a new capping agent in controlling the size of the nanoparticles. A size dependent blue shift in optical absorption with enhanced luminescence is observed. Since the calculated density of states do not show any change in the band gap of as-prepared quantum dots after capping, the observed blue shift of the absorption peak can solely be attributed to the so-called size-effect whereas the enhancement in luminescence to surfactant mediated defect passivation. It is expected that the observed properties of the cytosine capped CdSe quantum dots would facilitate a better bio-compatibility of tailor-made nanoparticles for bio-imaging applications. 相似文献
20.
Lee JR Whitley HD Meulenberg RW Wolcott A Zhang JZ Prendergast D Lovingood DD Strouse GF Ogitsu T Schwegler E Terminello LJ van Buuren T 《Nano letters》2012,12(6):2763-2767
X-ray absorption spectroscopy and ab initio modeling of the experimental spectra have been used to investigate the effects of surface passivation on the unoccupied electronic states of CdSe quantum dots (QDs). Significant differences are observed in the unoccupied electronic structure of the CdSe QDs, which are shown to arise from variations in specific ligand-surface bonding interactions. 相似文献