首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
What has caused the use of fertilizers to skyrocket in China?   总被引:4,自引:0,他引:4  
The consumption of fertilizers in China has skyrocketed in the last six decades and this raises strong environmental concerns. The study was conducted to determine which crop production factors have contributed to the increased use of fertilizers in China. Firstly, annual fertilizer application data for 16 major crops over the period 1950–2010 were estimated, and periodic changes were analyzed to determine the contributions made by total cropping area (TCA), fertilizer application rate (kg ha?1, FAR), and crop type (proportions of TCA for individual crops, CT). Results show that total fertilizer consumption increased from 0.07 Mt in 1950 to 49.6 Mt in 2000, and 74.7% of the increase is attributable to FAR, 0.05% to TCA, and 25.3% to CT. The contribution of FAR to total fertilizer consumption decreased (from 98.3% in the 1950s to 65.6% in the 2000s), while the contributions of TCA and CT increased (from 0.90 and 0.81% in the 1950s to 17.5 and 16.8% in the 2000s, respectively). Maize, rice, and wheat were the major crops to which most of the fertilizers (up to 87.9%) were applied before the 1980s. However, after the 1980s maize, vegetables and fruits became the major drivers of fertilizers consumption. These three crops contributed 59.6% in the 1990s and 90.6% in the 2000s to the increased consumption of fertilizers. Results suggest that shifts in FAR and CT may be the critical control points for future fertilizer consumption, and increased integrated soil-crop system management in China should focus on vegetables and fruits.  相似文献   

2.
The degree of selectivity obtained in the selective oxidation of o-xylene to phthalic anhydride by V2O5/TiO2 catalysts under industrial conditions is no more than 75–80%: the mechanism of the non-selective oxidation has commanded little interest. Principal features of the reaction and the catalyst are reviewed: the formation of polymeric by-products at low conversion, when the surface is not highly oxidised, is noted, as these will lead to carbon oxides, but at high conversion it is probable that adsorbed intermediate species may undergo side-reactions with reduced V sites, or exposed Ti ions. The resulting strongly-held species can only lead to carbon oxides, so that limiting factors may be (i) degree of completeness of the V2O5 monolayer, and (ii) the rate of re-oxidation of reduced surface. © 1997 SCI.  相似文献   

3.
Two most sophisticated methods of carbon porosity characterization (high resolution αs-plot and the procedure proposed by Nguyen and Do, (ND)) were utilized for the assessment of porosity from the series of numerically generated adsorption isotherms. Basing on the Dubinin–Astakhov (DA) adsorption isotherm equation, two series of adsorption isotherms of nitrogen (T=77.5 K) were generated for constant E0 and different n values, and for constant n and different E0. They were described by the both above-mentioned methods. The types of obtained αs-plots as well as the pore size distribution curves (PSD) lead to suggestions about the basic features of the DA and the meaning of the parameters of this adsorption isotherm equation.  相似文献   

4.
5.
6.
Despite the amazing achievements over the years, the activated sludge (AS) process still maintains inherent drawbacks, namely gravity settling, high sludge ages, low excess sludge generation, etc., which hinder its successful operation and sometimes disrupt system performance. Substantial research on the subject has provided clear scientific evidence that time has come – or even passed – for reshaping the AS process. In the novel AS process, gravity settling will be replaced by membrane filtration, which will convert the system configuration into a membrane activated sludge (MAS) reactor; this configuration will be operated at an extremely low sludge age range of 2 to 4 days, which will maximize sludge generation and it will abandon the traditional anaerobic sludge digestion for optimizing energy recovery. It is suggested that super-fast membrane activated sludge (SFMAS) reactor be the new face of the AS process. SFMAS reactor will be the core unit of the AS process essentially limited to organic carbon (chemical oxygen demand) removal and energy recovery. The core SFMAS unit will also enable to benefit from all the assets of the AS process, such as nutrient removal, biopolymer recovery, etc., by means of hybrid systems in different configurations, i.e. by reactors with various functions that will be attached to the core unit. © 2019 Society of Chemical Industry  相似文献   

7.
8.
We present a comprehensive study on the influence of the synthesis atmosphere on the structure and properties of nanodiamond-derived carbon onions. Carbon onions were synthesized at 1300 and 1700 °C in high vacuum or argon flow, using rapid dynamic heating and cooling. High vacuum annealing yielded carbon onions with nearly perfect spherical shape. An increase in surface area was caused by a decrease in particle density when transitioning from sp3 to sp2 hybridization and negligible amounts of disordered carbon were produced. In contrast, carbon onions from annealing nanodiamonds in flowing argon are highly interconnected by few-layer graphene nanoribbons. The presence of the latter improves the electrical conductivity, which is reflected by an enhanced power handling ability of supercapacitor electrodes operated in an organic electrolyte (1 M tetraethylammonium tetrafluoroborate in acetonitrile). Carbon onions synthesized in argon flow at 1700 °C show a specific capacitance of 20 F/g at 20 A/g current density and 2.7 V cell voltage which is an improvement of more than 40% compared to vacuum annealing. The same effect was measured for a synthesis temperature of 1300 °C, with a 140% higher capacitance at 20 A/g for argon flow compared to vacuum annealing.  相似文献   

9.
Adaptation and response to environmental changes require dynamic and fast information distribution within the plant body. If one part of a plant is exposed to stress, attacked by other organisms or exposed to any other kind of threat, the information travels to neighboring organs and even neighboring plants and activates appropriate responses. The information flow is mediated by fast-traveling small metabolites, hormones, proteins/peptides, RNAs or volatiles. Electric and hydraulic waves also participate in signal propagation. The signaling molecules move from one cell to the neighboring cell, via the plasmodesmata, through the apoplast, within the vascular tissue or—as volatiles—through the air. A threat-specific response in a systemic tissue probably requires a combination of different traveling compounds. The propagating signals must travel over long distances and multiple barriers, and the signal intensity declines with increasing distance. This requires permanent amplification processes, feedback loops and cross-talks among the different traveling molecules and probably a short-term memory, to refresh the propagation process. Recent studies show that volatiles activate defense responses in systemic tissues but also play important roles in the maintenance of the propagation of traveling signals within the plant. The distal organs can respond immediately to the systemic signals or memorize the threat information and respond faster and stronger when they are exposed again to the same or even another threat. Transmission and storage of information is accompanied by loss of specificity about the threat that activated the process. I summarize our knowledge about the proposed long-distance traveling compounds and discuss their possible connections.  相似文献   

10.
11.
Testosterone is the most important hormone in male health. Aging is characterized by testosterone deficiency due to decreasing testosterone levels associated with low testicular production, genetic factors, adiposity, and illness. Low testosterone levels in men are associated with sexual dysfunction (low sexual desire, erectile dysfunction), reduced skeletal muscle mass and strength, decreased bone mineral density, increased cardiovascular risk and alterations of the glycometabolic profile. Testosterone replacement therapy (TRT) shows several therapeutic effects while maintaining a good safety profile in hypogonadal men. TRT restores normal levels of serum testosterone in men, increasing libido and energy level and producing beneficial effects on bone density, strength and muscle as well as yielding cardioprotective effects. Nevertheless, TRT could be contraindicated in men with untreated prostate cancer, although poor findings are reported in the literature. In addition, different potential side effects, such as polycythemia, cardiac events and obstructive sleep apnea, should be monitored. The aim of our review is to provide an updated background regarding the pros and cons of TRT, evaluating its role and its clinical applicability in different domains.  相似文献   

12.
Template removal is a critical step in the preparation of most molecularly imprinted polymers (MIPs). The polymer network itself and the affinity of the imprinted cavities for the template make its removal hard. If there are remaining template molecules in the MIPs, less cavities will be available for rebinding, which decreases efficiency. Furthermore, if template bleeding occurs during analytical applications, errors will arise. Despite the relevance to the MIPs performance, template removal has received scarce attention and is currently the least cost-effective step of the MIP development. Attempts to reach complete template removal may involve the use of too drastic conditions in conventional extraction techniques, resulting in the damage or the collapse of the imprinted cavities. Advances in the extraction techniques in the last decade may provide optimized tools. The aim of this review is to analyze the available data on the efficiency of diverse extraction techniques for template removal, paying attention not only to the removal yield but also to MIPs performance. Such an analysis is expected to be useful for opening a way to rational approaches for template removal (minimizing the costs of solvents and time) instead of the current trial-and-error methods.  相似文献   

13.
Small-cell lung cancer (SCLC) is an aggressive malignancy that exhibits a rapid doubling time, a high growth fraction, and the early development of widespread metastases. The addition of immune checkpoint inhibitors to first-line chemotherapy represents the first significant improvement of systemic therapy in several decades. However, in contrast to its effects on non-SCLC, the advantageous effects of immunotherapy addition are modest in SCLC. In particular, only a small number of SCLC patients benefit from immune checkpoint inhibitors. Additionally, biomarkers selection is lacking for SCLC, with clinical trials largely focusing on unselected populations. Here, we review the data concerning the major biomarkers for immunotherapy, namely, programmed death ligand 1 expression and tumour mutational burden. Furthermore, we explore other potential biomarkers, including the role of the immune microenvironment in SCLC, the role of genetic alterations, and the potential links between neurological paraneoplastic syndromes, serum anti-neuronal nuclear antibodies, and outcomes in SCLC patients treated with immunotherapy.  相似文献   

14.
A major transition in the history of the Pancrustacea was the invasion of several lineages of these animals onto land. We investigated the functional performance of odor-capture organs, antennae with olfactory sensilla arrays, through the use of a computational model of advection and diffusion of odorants to olfactory sensilla while varying three parameters thought to be important to odor capture (Reynolds number, gap-width-to-sensillum-diameter ratio, and angle of the sensilla array with respect to oncoming flow). We also performed a sensitivity analysis on these parameters using uncertainty quantification to analyze their relative contributions to odor-capture performance. The results of this analysis indicate that odor capture in water and in air are fundamentally different. Odor capture in water and leakiness of the array are highly sensitive to Reynolds number and moderately sensitive to angle, whereas odor capture in air is highly sensitive to gap widths between sensilla and moderately sensitive to angle. Leakiness is not a good predictor of odor capture in air, likely due to the relative importance of diffusion to odor transport in air compared to water. We also used the sensitivity analysis to make predictions about morphological and kinematic diversity in extant groups of aquatic and terrestrial crustaceans. Aquatic crustaceans will likely exhibit denser arrays and induce flow within the arrays, whereas terrestrial crustaceans will rely on more sparse arrays with wider gaps and little-to-no animal-induced currents.  相似文献   

15.
In this focused review, we address the role of the kallikrein-related peptidase 3 (KLK3), also known as prostate-specific antigen (PSA), in the regulation of angiogenesis. Early studies suggest that KLK3 is able to inhibit angiogenic processes, which is most likely dependent on its proteolytic activity. However, more recent evidence suggests that KLK3 may also have an opposite role, mediated by the ability of KLK3 to activate the (lymph)angiogenic vascular endothelial growth factors VEGF-C and VEGF-D, further discussed in the review.  相似文献   

16.
Endometriosis (EM) is an estrogen-dependent disease characterized by the presence of epithelial, stromal, and smooth muscle cells outside the uterine cavity. It is a chronic and debilitating condition affecting ~10% of women. EM is characterized by infertility and pain, such as dysmenorrhea, chronic pelvic pain, dyspareunia, dysuria, and dyschezia. Although EM was first described in 1860, its aetiology and pathogenesis remain uncertain. Recent evidence demonstrates that the peripheral nervous system plays an important role in the pathophysiology of this disease. Sensory nerves, which surround and innervate endometriotic lesions, not only drive the chronic and debilitating pain associated with EM but also contribute to a growth phenotype by secreting neurotrophic factors and interacting with surrounding immune cells. Here we review the role that peripheral nerves play in driving and maintaining endometriotic lesions. A better understanding of the role of this system, as well as its interactions with immune cells, will unearth novel disease-relevant pathways and targets, providing new therapeutics and better-tailored treatment options.  相似文献   

17.
Zinc is a trace metal ion in the central nervous system that plays important biological roles, such as in catalysis, structure, and regulation. It contributes to antioxidant function and the proper functioning of the immune system. In view of these characteristics of zinc, it plays an important role in neurophysiology, which leads to cell growth and cell proliferation. However, after brain disease, excessively released and accumulated zinc ions cause neurotoxic damage to postsynaptic neurons. On the other hand, zinc deficiency induces degeneration and cognitive decline disorders, such as increased neuronal death and decreased learning and memory. Given the importance of balance in this context, zinc is a biological component that plays an important physiological role in the central nervous system, but a pathophysiological role in major neurological disorders. In this review, we focus on the multiple roles of zinc in the brain.  相似文献   

18.
Possible scenarios of ignition and explosion development in coal mines are discussed. A principal possibility of complete quenching of detonation and combustion with the use of a sheet consisting of inert particles is experimentally demonstrated. As the detonation quenching process is rather complicated, it is recommended to focus the attention at the initial stage of ignition of the methane–air mixture, when it is possible to ensure effective quenching of the ignition site by using methods of advanced automatic monitoring and control with clear satisfaction of space and time requirements.  相似文献   

19.
The surface energy of metallic nanocrystals is relatively high compared to bulk materials due to the metal–metal bond deficiency of the surface atoms. This results in an insufficient chemical valency. In addition, smaller nanoparticles possess a higher degree of curvature, weakening the bonding of their surface atoms. This is especially true for non-spherical shapes, which are comprised of a large number of sharp corner and edge sites. These atomic sites possess higher surface energies due to the lower number of shared bonds with the nanoparticle, resulting in instability of the surface atoms and rendering them physically unstable and chemically active. In many instances, the constant “bombardment” of these surface atoms by the solvent molecules as well as by the reactant molecules when these nanocrystals are in colloidal solution could lead to surface atom dissolution, both physically and/or chemically. This phenomenon could alter the functionality of the metallic colloidal nanoparticle from supplying catalytically active sites (in heterogeneous catalysis) to serving as a reservoir of catalytically active species to the solution (in homogeneous catalysis). In the latter type, if the atoms of the nanocatalyst appear in the products, the nanoparticle is no longer a catalyst but a reactant. In this review we attempt to answer the question raised in the title by examining our previous work on the changes in size, shape, and other physical and chemical properties of colloidal transition metal nanoparticles during the nanocatalysis of two fundamentally different and important reactions: (1) the gentle electron-transfer reaction at room temperature involving the reduction of hexacyanoferrate (III) ions with thiosulfate ions and (2) the more harsh Suzuki cross-coupling reaction between phenylboronic acid and iodobenzene that takes place at 100 °C for 12 h. Changes in the nanoparticle dimensions were followed with TEM and HRTEM. Raman and FTIR spectroscopies were used to follow the chemical changes. For each change, we will use the above definition to see if the observed change can help us determine whether the catalysis is homogeneous or heterogeneous.  相似文献   

20.
People with type 1 diabetes have an increased risk of developing microvascular complications, which have a negative impact on the quality of life and reduce life expectancy. Numerous studies in animals with experimental diabetes show that c-peptide supplementation exerts beneficial effects on diabetes-induced damage in peripheral nerves and kidneys. There is substantial evidence that c-peptide counteracts the detrimental changes caused by hyperglycemia at the cellular level, such as decreased activation of endothelial nitric oxide synthase and sodium potassium ATPase, and increase in formation of pro-inflammatory molecules mediated by nuclear factor kappa-light-chain-enhancer of activated B cells: cytokines, chemokines, cell adhesion molecules, vascular endothelial growth factor, and transforming growth factor beta. However, despite positive results from cell and animal studies, no successful c-peptide replacement therapies have been developed so far. Therefore, it is important to improve our understanding of the impact of c-peptide on the pathophysiology of microvascular complications to develop novel c-peptide-based treatments. This article aims to review current knowledge on the impact of c-peptide on diabetic neuro- and nephropathy and to evaluate its potential therapeutic role.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号