首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The role of oxygen atoms in the growth of magnetron sputter-deposited ZnO films was studied by alternating the deposition of a several-nanometer-thick ZnO layer and an O2/Ar mixed plasma exposure, i.e., a layer-by-layer (LbL) technique. The film crystallization was promoted by suppressing the oxygen vacancy and interstitial defects by adjusting the exposure conditions of the O2/Ar plasma. These findings suggest that the chemical potential of the oxygen atom influences the film crystallization and the electronic state. The diffusion and effusion of oxygen atoms at the growing surface have an effect similar to that of thermal annealing, promoted film crystallization and the creation and the annihilation of oxygen- and zinc-related defects. The role of oxygen atoms reaching at the growing film surface is discussed in terms of chemical annealing and a possible oxygen diffusion mechanism is proposed.  相似文献   

2.
Rapid thermal annealing (RTA) of sputter-deposited ZnO/ZnO:N/ZnO multilayered structures formed by a combination of radio-frequency magnetron sputtering and a microwave plasma source was investigated for the fabrication of highly-crystallized ZnO:N films. The assistance of the microwave plasma source resulted in the enhancement of nitrogen incorporation into the ZnO films and the deterioration of film crystallization. On the other hand, crystallization of the ZnO:N layer was improved by RTA with no significant effusion and diffusion of N atoms using a ZnO/ZnO:N/ZnO multilayered structure. The role of the front and bottom ZnO layers during RTA of ZnO/ZnO:N/ZnO multilayered structures is demonstrated.  相似文献   

3.
Pulsed laser deposition of ZnO thin films, using KrF laser, is analysed. The films were deposited on (001) sapphire substrates at 400 °C, at two different oxygen pressures (0·3 and 0·4 mbar) and two different target–substrate distances (30 and 40 mm). It is observed that in order to obtain good quality in the photoluminescence of the films, associated with oxygen stoichiometry, it is needed to maximize the time during which the plasma remains in contact with the growing film (plasma residence time), which is achieved by selecting suitable combinations of oxygen pressures and target to substrate distances. It is also discussed that for the growth parameters used, the higher probability for ZnO films growth results from the oxidation of Zn deposited on the substrate and such process takes place during the time that the plasma is in contact with the substrate. Moreover, it is observed that maximizing the plasma residence time over the growing film reduces the rate of material deposition, favouring the surface diffusion of adatoms, which favours both Zn–O reaction and grain growth.  相似文献   

4.
Vertically aligned long ZnO nanorods (NRs) were grown by metal organic chemical vapor deposition (MOCVD) technique. Prior to the NRs growth Ga-doped ZnO (GZO) film was deposited by DC sputtering technique on glass substrates. The length and width of the NRs were 25 microm and 450-500 nm, respectively. Structural and optical properties of the NRs were investigated after the growth. The NRs were single crystalline in nature with the preferred growth along c-axis. The diffusion of Ga atoms in the bottom of the NRs during the growth is detected. A prominent near band edge emission of NRs was observed from room-temperature photoluminescence study. Electrical characteristics across the NRs-thin film hybrid structure were measured with UV exposure, where the rise and fall of the photocurrent was exponential in nature due to the desorption and adsorption of oxygen in the surface.  相似文献   

5.
Lei Wan  Zerong Hou  Hao Sun 《Thin solid films》2010,518(23):6858-6865
In order to study the CdS recrystallization mechanism, a comparative study was carried out on thin films prepared by chemical bath deposition. The CdS films were annealed in air with or without a CdCl2 coating layer. In-situ Raman spectra obtained during the annealing showed that both the air- and the CdCl2-annealing did not cause rearrangement of the neighboring atoms in the CdS clusters below ~ 300 °C. CdS thin film was partially oxidated to CdO and CdSO4 on the cluster surface when annealed in air. The oxides and the sulfur stoichiometric deficiency prevented the clusters to coalesce at higher temperatures. Coating thin CdS film with a thin CdCl2 layer protected it from oxidation during annealing in air and promoted formation of ClS and VCd point defects in CdS. The anti-oxidation was attributed to the incorporation of a significant amount of Cl into CdS to form the ClS, which prevented the oxygen in-diffusion and chemical bonding during the annealing. The anti-oxidation at the CdS nano-crystalline surface and the point defects formed in the CdS promoted coalescence of the neighboring clusters without the need of long-range redistribution of the atoms. Large CdS grains with good crystalline quality formed through recrystallization during the CdCl2 heat treatment, which provided the solid basis for the subsequent CdTe growth and high efficient CdS/CdTe solar cell fabrication.  相似文献   

6.
Rapid thermal annealing of sputter-deposited ZnO and Al-doped ZnO (AZO) films with and without an amorphous silicon (a-Si) capping layer was investigated using a radio-frequency (rf) argon thermal plasma jet at atmospheric pressure. The resistivity of bare ZnO films on glass decreased drastically from 106 to 103 Ω·cm at maximum surface temperatures Tmax above 650 °C, whereas the resistivity increased from 10− 4 to 10− 3-10− 2 Ω·cm for bare AZO films. On the other hand, the resistivity of AZO films with a 30-nm-thick a-Si capping layer remained below 10− 4 Ω·cm, even after TPJ annealing at a Tmax of 825 °C. X-ray diffraction and X-ray photoemission electron studies revealed that the film crystallization of both AZO and a-Si layers was promoted without the formation of an intermixing layer. Additionally, the crystallization of phosphorous- and boron-doped a-Si layers at the sample surface was promoted, compared to that of intrinsic a-Si under identical plasma annealing conditions. The role of the a-Si capping layer on sputter-deposited AZO and ZnO films during TPJ annealing is demonstrated. The effects of the mixing of phosphorous and boron impurities in a-Si:H during TPJ annealing of flat and textured AZOs are also discussed.  相似文献   

7.
Photoelectronic characteristics are investigated in well-aligned MgO-coated ZnO nanorods (MgO/ZnO nanocables) grown on Si substrates buffered with ZnO film at a low temperature by solution techniques. Transmission electron microscopy shows that a rough surface was observed for the MgO-coated ZnO nanorods due to deposition of MgO nanoparticles on the surface of the ZnO nanorods. However, after annealed at high temperatures, the surface of the MgO-coated ZnO nanorods was flattened to form Mg-doped ZnO nanorods. Photoluminescence spectra of Mg-doped ZnO nanorods displayed a blue shift of the near-band-edge emission with increasing annealing temperature indicative of an increase in the band gap of the MgZnO alloy due to diffusion of the Mg atoms into the ZnO nanorods. In contrast, no blue shift was detected for the samples annealed in H2/N2 (5%/95%) reduction atmosphere but a blue emission was detected at 800 degrees C, indicating that MgO diffusion process may produce a new luminescent center to emit the blue emission in H2/N2 reduction atmosphere.  相似文献   

8.
9.
In this work, the charge carrier density of ZnO nanoparticle films was modified after deposition and annealing by an oxygen plasma treatment. The respective films were utilized as active layers in thin film transistors. For a discussion of the plasma–surface interaction on the molecular level, the electrical behavior of the layers was investigated which in general is highly sensitive to low level variations in defect or doping densities. A treatment with remote oxygen plasma at 400 W for 10 s led to a shift of the turn-on voltage from ?12 to 4 V and a reduction of the off-current by more than two orders of magnitude. A model for the influence of oxygen species adsorbed to ZnO nanoparticle surfaces on electrical characteristics of ZnO nanoparticle thin film transistors is introduced.  相似文献   

10.
The electrical characteristics of hydrogen annealing on the molybdenum doped ZnO (MZO) thin film were discussed in the paper. The MZO film was deposited by an radio frequency sputtering, then it was annealed in hydrogen with a microwave plasma chemical vapor deposition system. The resistivity of MZO was decreased from 1.1 × 10?2 to 9.5 × 10?3 Ω cm after the hydrogen annealing. Improvements of the electrical properties are both due to the defects repairing through annealing and hydrogen doping effects of the MZO thin film. The higher temperature annealed MZO film shows slightly lower transmittance which is due to the higher carrier concentration.  相似文献   

11.
Sol-gel wet-chemical techniques were used to prepare ZnO, Al-ZnO (Al:Zn = 1:10 mol/mol) and Cu-ZnO (Cu:Zn = 1:10 mol/mol) thin films for characterization as functional layers for chemiresistive oxygen sensors. Cu and Al minor components influence the ZnO films' topography and their thermally induced chemical and structural evolution. As prepared (room temperature) films have the structure of layered basic zinc acetate, a lamellar ZnO precursor. Upon annealing at temperatures through 973 K, the films display similar chemical evolution patterns—temperatures above 773 K are needed to completely desorb solvents and decompose precursors. Cu facilitates c-axis orientation of the film as its structure matures, while Al slows its crystallization. Chemiresistive sensors, fabricated by coating thin film functional layers onto interdigitated electrode (IDE) transducers, were evaluated for their responses to oxygen at operating temperatures through 873 K. A ZnO/IDE sensor displays high sensitivity for O2 at an intermediate temperature, 673 K, reflecting an optimal balance between surface O2 coverage and carrier availability. At 1:10 mol/mol Cu:Zn and Al:Zn, the developing ZnO structure cannot accommodate all minor component atoms. Surplus atoms accumulate in independent phases at grain boundaries, contributing to both high base resistances (in N2) and low sensitivity to oxygen.  相似文献   

12.
Undoped and Al-doped ZnO thin films were deposited on quartz substrates using an indigenously developed modified chemical vapor deposition technique. Microstructures of the deposited films were optimized by adjusting various growth parameters. The baseline resistance of the ZnO film sensors was stabilized by annealing the as-deposited films periodically in an oxidizing and reducing ambient at maximum operating temperature. The sensor parameters were studied by exposing the optimized ZnO thin films to low concentrations of dimethylamine (DMA) and trimethylamine (TMA), the chemical species released from harvested fish and other seafood with ageing. The effect of operating temperature was found to play a vital role in determining the sensitivity and resolution of the sensor. While the undoped ZnO film surface, sensitized with palladium, exhibited higher DMA sensitivity than that of TMA, an enhanced TMA sensitivity was noticed with the ZnO films doped with aluminum.  相似文献   

13.
连续离子层吸附与反应法(SILAR)生长ZnO多晶薄膜的研究   总被引:1,自引:0,他引:1  
采用连续离子层吸附与反应法(SILAR),以锌氨络离子([Zn(NH3)4]2+)为前驱体溶液,在玻璃衬底上沉积了ZnO薄膜,以XRD和SEM等手段分析了薄膜的晶体结构和表面、断面形貌,考察了空气气氛下的退火过程对ZnO薄膜晶体结构与微观形貌的影响,并初步探讨了以SILAR方法沉积ZnO薄膜的机理.结果表明,经200次SILAR沉积循环,所得ZnO薄膜为红锌矿结构的多晶薄膜,沿<002>方向择优生长;薄膜表面致密、光滑均匀,厚度约800nm.退火处理使ZnO薄膜氧缺位减少,晶粒沿c轴取向增强;随退火温度升高,锌间隙原子增加;500℃退火时,ZnO薄膜发生再结晶.减小前驱体溶液的[NH3·H2O]/[Zn2+]比率可提高ZnO薄膜生长速率.  相似文献   

14.
The thermal stability of thin Ru single layer and Ru/TaN bilayers grown on bare Si by plasma enhanced atomic layer deposition (PEALD) have been studied with Cu/Ru, Cu/Ru/TaN structures as a function of annealing temperature. To investigate the characteristics as a copper diffusion barrier, a 50 nm thick Cu film was sputtered on Ru and Ru/TaN layers and each samples subjected to thermal annealing under N2 ambient with varied temperature 300, 400, and 500 degrees C, respectively. It was found that the single 5 nm thick ALD Ru layer acted as an effective Cu diffusion barrier up to 400 degrees C. On the other hand ALD Ru (5 nm)/TaN (3.2 nm) showed the improved diffusion barrier characteristics even though the annealing temperature increased up to 500 degrees C. Based on the experimental results, the failure mechanism of diffusion barrier would be related to the crystallization of amorphous Ru thin film as temperature raised which implies the crystallized Ru grain boundary served as the diffusion path of Cu atoms. The combination of ALD Ru incorporated with TaN layer would be a promising barrier structure in Cu metallization.  相似文献   

15.
Flow modulation chemical vapor deposition (FMCVD) with titanium tetrachloride (TiCl4) and ammonia (NH3) is effective for depositing titanium nitride (TiN) films with conformal morphology, good step coverage, low electrical resistivity, and low chlorine residual contamination. It means that FMCVD TiN film is a good candidate of diffusion barriers for copper interconnection technology in ULSI. But the diffusion barrier property of FMCVD TiN film against Cu diffusion has not been confirmed. So, firstly, we deposited Cu (100 nm)/FMCVD TiN (25 nm)/Si multilayer films and investigated the thermal stability of Cu/TiN/Si structure. Vacuum annealing was done at 400, 500, 550 and 600 °C. For films annealed for 30 min at 400 °C, Cu diffused through the TiN layer and formed copper silicides on the surface of Si substrates. Therefore, FMCVD films formed under such conditions are unsatisfactory diffusion barriers. To enhance the diffusion barrier property of FMCVD TiN films, we used sequential deposition to introduce a monolayer of Al atoms between two TiN films. Etch-pit tests showed that for TiN films with Al interlayer, Cu diffusion through the barrier occurred at 500 °C and that is 100 °C higher than TiN film without Al interlayer. Al atoms formed AlOx with oxygen atoms present in the TiN films as impurities, and fill up the grain boundaries of TiN film, thereby blocking the diffusion of Cu atoms.  相似文献   

16.
Zinc oxide (ZnO) films were successfully deposited on silicon, silicon dioxide, and glass substrates by radio frequency magnetron sputtering at different deposition conditions. Field emission scanning electron microscopy, X-ray photoelectron spectroscopy, transmission and photoluminescence measurements were employed to analyze the effect of the deposition conditions and the postdeposition annealing treatment on the surface morphology, structure, chemical deposition and optical properties of ZnO thin films. It was found that the thickness of ZnO films decreased with increased ratio of oxygen/argon and increased temperature. The crystalline and stoichiometric quality of the film was improved by depositing at high temperature and low pressure. Crystals formed more tightly and uniformly with heat treatment under air ambient. The dark current of the ZnO metal-semiconductor-metal photodetector was reduced from 3.06 μA to 96.5 nA at 5 V after postdeposition annealing when compared with that of as-deposited ZnO. Its magnitude was found to be at least two orders lower than that of the as-deposited sample.  相似文献   

17.
Zinc Oxide (ZnO) thin films were prepared by cathodic vacuum arc deposition (CVAD) and filtered cathodic vacuum arc deposition (FCVAD) technology with a mixture of O2, Ar and N2. XRD patterns indicated that ZnO thin films prepared by CVAD had a combined orientation of ZnO (002) and ZnO (101). The preferential orientation ZnO (002) could be obtained at an optimum deposition pressure. On the other hand, a perfectly oriented ZnO (002) thin film prepared by FCVAD was obtained in lower pressure, which was beneficial to enhance the crystallization. The wetting behavior showed that all the ZnO thin films prepared by FCVAD were hydrophobic with low surface energy, but the reference samples of the polyurethane (PU) and glass are hydrophilic. Platelet adhesion test indicated that fewer platelets adhered and aggregated on the ZnO thin films prepared by FCVAD. The mechanism of hemocompatibility of ZnO thin films has also been investigated. It is suggested that hydrophobic surface with lower polar component and adhesive work are the two factors responsible for the excellent hemocompatibility.  相似文献   

18.
Copper (Cu) thin films with thicknesses ranging from 300 to 425 nm were prepared at various argon (Ar) pressures on p-type silicon substrates by direct current magnetron sputtering deposition. X-ray diffraction (XRD) and Karl Suss four-point probe were employed to study the film crystallinity and conductivity, respectively, as a function of Ar pressure in the deposition process. Detailed analysis on the XRD patterns shows that low Ar pressure enhances the Cu film crystallinity with larger grain size, which was deduced using Scherrer's formula. The behaviour of the electrical property of the Cu films complies with the trend of the grain size with Ar pressure, in which the film conductivity decreases with increasing Ar pressure. The authors attribute these phenomena to the degraded surface diffusion mechanism of the adatom on the growing surface, with increasing Ar pressure during the sputtering deposition process  相似文献   

19.
The effects of the post-annealing treatment on the properties of the ZnO thin films deposited by ion beam sputtering have been investigated. By using in situ X-ray diffraction technique, an overview of the crystallization behavior of the ZnO film during the annealing process was obtained. It was found that the whole process can be divided into three regions. The improvement of the film’s crystallinity performance mainly occurs within the annealing temperature ranging from 300 to 600 °C. Both in situ and ex situ XRD results show the shift of the ZnO (002) peak towards high angle with the increasing annealing temperature, which is attributed to the variation of the stress in the film. The stress is mainly caused by the intrinsic stress which is affected by the oxygen deficiency in the film. The oxygen deficiency is sensitive to the annealing ambient. The film annealed in the O2 ambient has less oxygen deficiency and higher resistivity. All the ZnO films deposited on the glass substrates have an optical transmittance over 85% in the visible region. Our results show that the ZnO films deposited using ion beam sputtering exhibit good thermal stability and high performance after annealing.  相似文献   

20.
Li-doped ZnO thin films were grown on quartz substrates by radio frequency magnetron sputtering and in situ annealing under O2 or Ar ambient. Li-related defects in ZnO films strongly depend on the annealing ambient. AFM and XRD indicated that ZnO films possessed a good crystallinity with c-axis orientation, uniform thickness and dense surface. Electrical and optical properties demonstrated that, an amount of LiZn defect had existed in ZnO annealed under O2ambient and an amount of Lii(o) defect had existed in ZnO annealed under Ar ambient. First-principle calculations were performed to calculate formation energies of Li-doped ZnO in order to explain the formation mechanism of Li-related defects in ZnO.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号