首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The model structure in anaerobic digestion has been clarified following publication of the IWA Anaerobic Digestion Model No. 1 (ADM1). However, parameter values are not well known, and uncertainty and variability in the parameter values given is almost unknown. Additionally, platforms for identification of parameters, namely continuous-flow laboratory digesters, and batch tests suffer from disadvantages such as long run times, and difficulty in defining initial conditions, respectively. Anaerobic sequencing batch reactors (ASBRs) are sequenced into fill-react-settle-decant phases, and offer promising possibilities for estimation of parameters, as they are by nature, dynamic in behaviour, and allow repeatable behaviour to establish initial conditions, and evaluate parameters. In this study, we estimated parameters describing winery wastewater (most COD as ethanol) degradation using data from sequencing operation, and validated these parameters using unsequenced pulses of ethanol and acetate. The model used was the ADM1, with an extension for ethanol degradation. Parameter confidence spaces were found by non-linear, correlated analysis of the two main Monod parameters; maximum uptake rate (k(m)), and half saturation concentration (K(S)). These parameters could be estimated together using only the measured acetate concentration (20 points per cycle). From interpolating the single cycle acetate data to multiple cycles, we estimate that a practical "optimal" identifiability could be achieved after two cycles for the acetate parameters, and three cycles for the ethanol parameters. The parameters found performed well in the short term, and represented the pulses of acetate and ethanol (within 4 days of the winery-fed cycles) very well. The main discrepancy was poor prediction of pH dynamics, which could be due to an unidentified buffer with an overall influence the same as a weak base (possibly CaCO3). Based on this work, ASBR systems are effective for parameter estimation, especially for comparative wastewater characterisation. The main disadvantages are heavy computational requirements for multiple cycles, and difficulty in establishing the correct biomass concentration in the reactor, though the last is also a disadvantage for continuous fixed film reactors, and especially, batch tests.  相似文献   

2.
城市污水处理厂不同污泥厌氧消化的产气研究   总被引:4,自引:0,他引:4  
选取北京市某污水处理厂剩余污泥、初沉污泥和混合污泥作为研究对象,在中温(35℃)条件下,进行污泥产气速率和产气量的对照试验,结果表明:剩余污泥、初沉污泥和混合污泥的日平均产气量分别为218.8 mL/(d·L泥)、339.2 mL/(d·L泥)和419.4 mL/(d·L泥),总产气量分别为3.5 m3/m3泥、5.43 m3/m3泥和6.71 m3/m3泥,分别达到理论产气量的44.02%、72.79%和78.39%;剩余污泥、初沉污泥和混合污泥产气中CH4和CO2等主要组分含量的差异并不显著;从污泥的产气速率、产气量和消化性能分析,不同污泥之间的相互关系是:混合污泥>初沉污泥>剩余污泥,可见城市污水处理厂中初沉污泥(或混合污泥)比单独的剩余污泥更适宜于采用厌氧消化工艺.  相似文献   

3.
Dublin's Ringsend WWTP was designed to serve a population of approximately 1.2 million p.e. with a sludge production of 37,000 dry tonnes per year after upgrading to full secondary treatment. Several technical solutions were put forward as part of a design, build, finance and operate (DBFO) competition, with the chosen solution being a proposal by Black and Veatch for a combination of sequencing batch reactor (SBR) technology and anaerobic digestion with Cambi thermal hydrolysis pre-treatment (THP). The THP plant was built by Cambi and handed over to B&V in 2002. The plant is now operated by Celtic Anglian Water. In September 2004 a test was carried out on the mass and energy balance of the plant following 2 years of operation and is detailed in this paper. The process enables digestion at very high dry solids feed and low hydraulic retention time. The plant was built with three digesters of 4250 m3 each and is fed with hydrolysed sludge at 11% DS. There are four no. 1 MW Jenbacher engines operating mainly on biogas. Each pair of engines is fitted with a waste heat boiler with a capacity of one tonne steam per hour. These boilers have sufficient capacity to provide 80% of the steam required for the THP, which in turn provides all the heat for the subsequent digestion in the form of hydrolysed feed. There are two main biogas boilers for top up steam and other uses of the biogas including thermal oxidation of concentrated odours.  相似文献   

4.
大型污泥厌氧消化系统的启动与运行调控   总被引:1,自引:0,他引:1  
北京小红门污水处理厂建有5座单体容积12 300m3的卵形污泥厌氧消化设施,设计沼气产量30 000m3/d。以运行数据为基础,总结了大型厌氧消化系统的启动、运行与调控经验,分析大型污泥厌氧消化系统的启动与运行特点。提出建议与措施,并提出系统优化的具体目标。  相似文献   

5.
The hybrid anaerobic solid-liquid (HASL) system is a modified two-phase anaerobic digester for food waste treatment. To enhance the performance of anaerobic digestion in the HASL system, thermal pre-treatment (heating at 150 degrees C for 1 h) and freezing/thawing (freezing for 24 h at-20 degrees C and then thawing for 12 h at 25 degrees C) were proposed for food waste pre-treatment before the anaerobic digestion. Both processes were able to alter the characteristics and structure of food waste favoring substance solubilization, and hence production of methane. However, there was no net energy gain when the energy required by the pre-treatment processes was taken into account.  相似文献   

6.
A dynamic mathematical model based on anaerobic digestion model no. 1 (ADM1) was developed for accumulation (AC) system treating concentrated black water and faecal matter at different temperatures. The AC system was investigated for the treatment of waste (water) produced from the following systems: vacuum toilet for black water (VBW), vacuum toilet for faeces with urine separation (VF), dry toilet (DT), dry toilets for faeces with urine separation (DF), separated faecal matter from conventional black water by filter bag (FB). For evaluation of the AC system treating the proposed waste (water) sources at 20 and 35 degrees C, two options were studied: (1) The filling period of the AC system was constant for all waste (water) sources (either 1, 3 or 6 months) and for each period, the seed sludge volume was varied; (2) The volume of the AC system was constant for all proposed waste (water) sources. The results showed that the filling period of the AC system was the main parameter affecting the system performance, followed by operational temperature, while the increase of the seed sludge volume slightly enhanced the performance of the system. The model results indicated that the filling period of the AC system should be higher than 150 days for obtaining a stable performance. It was found that the hydrolysis of biodegradable particulate chemical oxygen demand (COD) is the rate limiting step, as volatile fatty acid concentration is very low in all experimental conditions (< 200 mgCOD/L at 20 degrees C and < 100 mgCOD/L at 35 degrees C). Based on the results of the two options, it was found that the concentrated waste (water) sources have better performance than the diluted waste (water) sources, like VBW waste (water). Furthermore, smaller volume will be required for the AC system.  相似文献   

7.
An anaerobic fixed bed reactor, filled with small floating supports of polyethylene material (Bioflow 30) as inert media, was operated for 6 months to treat vinasse (wine residue after distillation). Bioflow 30 has a density of 0.93 and a specific area of 320 m2/m3. The experimental results showed that the efficiency of the reactor in removal of soluble COD was very good with a maximum organic loading rate of more than 30 g of COD/L x d and a COD removal efficiency of more than 80%. Bioflow 30 showed a high capability of biomass retention with 4-6 g of dried solids per support. Thus, at the end of the experiment, the fixed biomass represented 57 g of solids/L of reactor. The visual observation of the supports and the specific activity (0.54 g COD/g solids x d) of the fixed solids, which remained close to the values obtained with suspended biomass, showed that entrapment was playing an important role in the retention of the biomass inside the reactor. It was then possible to operate the reactor with a very high loading rate as the result of the increase of the solids in the reactor and the maintaining of the specific activity. Bioflow 30 is then an excellent support for use in a high rate anaerobic fixed bed.  相似文献   

8.
Modelling anaerobic digestion processes is a key aspect of studying and optimizing digesters and related waste streams. However, for the satisfactory prediction of biogas production and effluent characteristics, some parameters have to be calibrated according to the characteristics of the substrates. This article describes a calibration procedure for the IWA 'Anaerobic Digestion Model no. 1' applied to the modelling of a digester for treatment of pig slurry. The most sensitive parameters were selected and calibrated combining results from a continuous digester and from batch trials run with the sludge sampled from the digester and the addition of specific substrates. According to the sensitivity analysis, acetoclastic methanogenesis, acetogenesis of propionate and acidogenesis of sugars were identified as the main sensitive steps in our case. The calibration procedure led us to modify slightly acetogenesis of propionate kinetic. However, acetoclastic methanogenesis and acidogenesis of sugars kinetics were significantly reduced by decreasing km and increasing Ks. Indeed, for instance, a decrease of km_ac from 8 to 7 day(-1) combined with an increase of Ks_ac from 0.15 to 1.5 kgCOD/m3 was necessary. After calibration, ADM1 provides an accurate simulation of the continuous reactor results.  相似文献   

9.
10.
The observed acclimatisation to biodegradable toxicants in anaerobic cassava wastewater treatment is explained by modelling anaerobic cyanide degradation. A complete degradation pathway is proposed for cyanide. Cyanide degradation is modelled as enzymatic hydrolysis to formate and ammonia. Ammonia is added to the inorganic nitrogen content of the digester while formate is degraded by the hydrogenotrophic methanogens. Cyanide irreversible enzyme inhibition is modelled as an inhibition factor to acetate uptake processes. Cyanide irreversible toxicity is modelled as a decay factor to the acetate degraders. Cyanide as well as added phosphorus buffer solution were considered in the chemical equilibrium calculations of pH. The observed reversible effect after acclimatisation of sludge is modelled by a population shift between two aceticlastic methanogens that have different tolerance to cyanide toxicity. The proposed pathway is added to the IWA Anaerobic Digestion Model no.1 (ADM1). The ADM1 model with the designed extension is validated by an experiment using three lab-scale upflow anaerobic sludge bed reactors which were exposed to different cyanide loadings.  相似文献   

11.
A dynamic model has been developed to describe the anaerobic digestion of solid cattle waste in an accumulation system (AC). To calibrate the model an experiment was carried out at a lab-scale AC at 50 degrees C. The predicted methane production shows a very good agreement (i.e. R2 = 0.998) with the experimental data. However less agreement is evident for the intermediates. After model validation the model was applied to study the effect of different aspect ratios on the system performance. An optimum aspect ratio of 2-3 could be determined.  相似文献   

12.
In order to deal with the environmental problems associated with animal production industrialization and at the same time considering energy costs increasing, a piggery wastewater treatment process consisting of combined anaerobic digestion and biological nitrogen removal by activated sludge was developed. This contribution presents a modelling framework in order to optimize this process. Modified versions of the well established ASM1 and ADM1 models have been used. The ADM1 was extended with biological denitrification. pH calculation and liquid gas-transfer were modified to take into account the effect of associated components. Finally, two interfaces (ADMtoASM and ASMtoADM) were built in order to combine both models. These interfaces set up the COD, nitrogen, alkalinity and charge fractionation between both models. However, for the mass balances between both models, some hypotheses were considered and might be evaluated.  相似文献   

13.
The main current trends in final disposal of sludge from Wastewater Treatment Plants (WTP) include: safe use of nutrients and organic matter in agriculture, sludge disinfection and restricted use in landfill. As to sludge hygienization, helminth eggs have been used as a major parameter to determine the effectiveness of such process, and its inactivation can be reached by means of thermal treatment, under varying temperature and other conditions. In such context, the objective of this research was to determine how effectively biogas produced in UASB reactors could be used as a source of calorific energy for the thermal hygienization of excess anaerobic sludge, with Ascaris lumbricoides eggs being used as indicator microorganisms, and whether the system can operate on a self-sustained basis. The experiments were conducted in a pilot-scale plant comprising one UASB reactor, two biogas holders and one thermal reactor. The investigation proved to be of extreme importance to developing countries, since it leads to a simplified and fully self-sustainable solution for sludge hygienization, while making it possible to reuse such material for agricultural purposes. It should be also noted that using biogas from UASB reactors is more than sufficient to accomplish the thermal hygienization of all excess sludge produced by this system, when used for treating domestic sewage.  相似文献   

14.
This study aimed to evaluate the performance of the unified high-rate anaerobic digestion (UHAD) system treating co-substrate of sewage sludge and food waste. A 24-hr operating sequence consisted of four steps including fill, react, settle, and draw. The effects of co-substrate and organic loading rate (OLR) on the performance were investigated to verify the system applicability. In each OLR, the UHAD system showed higher CH4 recovery (> 70%), CH4 yield (0.3 L CH4/g VSadded) and CH4 production rate (0.6 L CH4/L/d) than the control system. In the specific methanogenic activity (SMA) tests on thermophilic biomass of the UHAD system, the average SMA of acetate (102 mL CH4/gVSS/d) was much higher than those of butyrate (85 mL CH4/g SS/d) and propionate (42 mL CH4/gVSS/d). It was demonstrated that the UHAD system for co-digestion resulted in higher methane yield and methane production rate due to sequencing batch operation, thermophilic digestion, and co-digestion. The enhanced performance could be attributed to longer retention time of active biomass, faster hydrolysis, higher CH4 conversion rate, and balanced nutrient conditions of co-substrate in the UHAD system. Consequently, this optimized unification could be a viable option for the simultaneous treatment of two types of OFMSW with high stability.  相似文献   

15.
This paper presents a comparison of dry anaerobic digestion reactors fed with differently sorted municipal organic solid wastes. One reactor was fed with source sorted organic wastes and a second reactor was fed with mixed organic wastes consisting of grey wastes, mechanically selected municipal solid wastes and sludge. The two reactors utilised the same process (Valorga) and operational conditions at full scale. The results of the study emphasise the influence of the kind of treated material on the process performances, especially in terms of biogas and methane production, thus, energy reclamation. The reactor treating the source sorted organic waste and the reactor treating the mixed organic wastes generated some 200 m3 and 60 m3 of biogas per ton of waste treated, respectively, while the specific methane production was some 0.40 and 0.13 m3CH4/kgTVS, respectively. The mass balance and the final fate of the digested material from the two reactors were also clearly different. As for the costs, these were some 29 Euro per ton of treated waste (50% for personnel) and 53 Euro/ton for disposing of the rejected materials. Incomes were some 100 Euro/ton (on average) and an other 15 Euro/ton came from green certificates. The initial investment was 16 million Euros.  相似文献   

16.
The present study investigates the thermophilic biohydrogen and methane production from olive pulp, which is the semi-solid residue coming from the two-phase processing of olives. It focussed on: a) production of methane from the raw olive pulp; b) anaerobic bio-production of hydrogen from the olive pulp; c) subsequent anaerobic treatment of the hydrogen-effluent with the simultaneous production of methane; and d) development of a mathematical model able to describe the anaerobic digestion of the olive pulp and the effluent of hydrogen producing process. Both continuous and batch experiments were performed. The hydrogen potential of the olive pulp amounted to 1.6 mmole H2 per g TS. The methane potential of the raw olive pulp and hydrogen-effluent was as high as 19 mmole CH4 per g TS suggesting that: a) olive pulp is a suitable substrate for methane production; and b) biohydrogen production can be very efficiently coupled with a subsequent step for methane production.  相似文献   

17.
介绍了石家庄市桥东污水处理厂卵形厌氧消化池的详细启动过程,包括消化池的启动顺序、种泥的投加与培养、沼气系统等,总结了大型城市污水处理厂污泥厌氧消化池的启动运行经验,探讨了提高污泥培养效率的措施。  相似文献   

18.
The effects of increasing nitrobenzene (NB) concentrations and hydraulic retention time (HRT) on the performance of anaerobic baffled reactor (ABR) and aerobic completely stirred tank reactor (CSTR) were studied. In the first step the NB concentration was increased from 30 to 700 mg/L at constant COD and flowrates. Maximum COD removal efficiencies in ABR varied between 88-92% as NB concentrations increased from 30 to 210 mg/L. After this dose, COD removal efficiency decreased to 85 and 79% at NB concentrations of 550 and 700 mg/L, respectively. Removal efficiencies of NB were nearly 100% for all NB concentrations in ABR reactor effluent. In the second step, COD and NB concentrations were kept constant while HRT decreased from 10.38 days to 1 day. As HRT decreased from 10.38 to 2.5 days the COD removal efficiencies in the anaerobic and anaerobic/aerobic reactor effluents were 92-94% and 97-98%, respectively. As HRT decreased from 2.5 days to 1 day COD removal efficiencies in the anaerobic and anaerobic/aerobic reactor effluents decreased to 83 and 95%, respectively. This study showed that HRT is a more important operation parameter than increasing NB concentration in ABR/CSTR sequential reactor system. Although ABR/CSTR system exhibited good COD and NB removal efficiencies, the lower HRTs slightly decreased the removal efficiencies compared to increasing NB concentration.  相似文献   

19.
A thermal hydrolysis pilot plant with direct steam injection heating was designed and constructed. In a first period the equipment was operated in batch to verify the effect of sludge type, pressure and temperature, residence time and solids concentration. Optimal operation conditions were reached for secondary sludge at 170 degrees C, 7 bar and 30 minutes residence time, obtaining a disintegration factor higher than 10, methane production increase by 50% and easy centrifugation In a second period the pilot plant was operated working with continuous feed, testing the efficiency by using two continuous anaerobic digester operating in the mesophilic and thermophilic range. Working at 12 days residence time, biogas production increases by 40-50%. Integrating the energy transfer it is possible to design a self-sufficient system that takes advantage of this methane increase to produce 40% more electric energy.  相似文献   

20.
The objective of this study was to evaluate the performances and microbial diversities for development of the effective hyperthermophilic digester system that consists of a hyperthermophilic reactor and hyperthermophilic or thermophilic reactor in series. Lab-scale reactors were operated continuously fed with artificial kitchen garbage. The effect of temperature on the acidification step was firstly investigated. Results indicated that 20.8% of COD solubilization was achieved at 70 degrees C, with 12.6% at 80 degrees C. The average protein solubilization reached 31% at 80 degrees C. Methane conversion efficiency following the acidification was around 85% on average at 55 degrees C, but decreased with increasing temperature and methane gas was not produced over 73 degrees C. As well, bacteria affiliated with the methanogens dominated the population below 65 degrees C, while those affiliated with acidogens were predominant over 73 degrees C. These results indicated that the hyperthermophilic process has considerable benefits to treat wastewater or waste containing high concentration of protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号