首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new method of synthesis of semipolar gallium nitride on a silicon substrate using the technology of solid-phase epitaxy of 3C-SiC nanocrystals has been suggested. It has been demonstrated that application of buffer layers of 3C-SiC and AlN enables one to form epitaxial layers of semipolar gallium nitride with layer deviation from the polar position of the c axis of a wurtzite crystal by an angle of 48°–51° at the minimal half-width of the X-ray diffraction rocking curve (ωθ) ~ 24′. The observed bend of a cylindrical character in the structure of GaN/AlN/3C-SiC(001) is explained by the anisotropic deformation of semipolar GaN on silicon.  相似文献   

2.
Silicon nitride with thin sputter-deposited titanium and nickel films was joined to SUS304 stainless steel (18% Cr-8% Ni) using metallic buffers in a series of silicon nitride/nickel/ molybdenum/nickel/SUS304, and the joining strength and microstructures were investigated. Four-point bending tests showed fracture strength of the joints up to 169 MPa. Cracks were formed at the interface between the silicon nitride and its adjacent nickel buffer, and frequently extended into the silicon nitride. Microstructural analyses revealed that the silicon nitride reacted with the sputter-deposited titanium producing titanium nitride and isolated silicon atoms, and that silicon and titanium diffused into the nickel buffer. Calculations using a finite-element method indicated a marked reduction in thermal stress induced in the joined silicon nitride with increasing thickness of the molybdenum buffer. The strong interfacial bond inducing the fracture of the joined silicon nitride was interpreted in terms of a good interfacial reaction, the interdiffusions and the reduction of thermal stress being due to the insertion of the molybdenum buffer.  相似文献   

3.
The influence of thin 4H-SiC buffer layers grown by liquid phase epitaxy (LPE) on structural quality of 4H-SiC low-doped epitaxial layers, grown by chemical vapor deposition (CVD) was investigated in detail. A dramatic defect density reduction in CVD epitaxial layers grown on commercial wafers with buffer LPE layer was detected. P+n junctions were formed on these CVD layers by high dose Al ion implantation followed by rapid thermal anneal. It was shown that both the increase of diffusion lengths of minority carriers (Lp) in CVD layers and the forming of p+-layers after Al ion implantation and high temperature anneal lead to superior device characteristics.  相似文献   

4.
研究了三种方法制备的氮化硅薄膜的组成、表面结构、热氧化稳定性以及抗离子束损伤等性能。研究发现APCVD法制备氮化硅薄膜的Si3N4含量最高,PRSD法制备的薄膜次之,而PECVD法制备的薄膜Si3N4含量最低。在PRSD薄膜中没有N-H键存在,仅有少量的Si-H键存在,薄膜的热氧化稳定性和抗离子束损伤性能最好。APCVD薄膜中含有少量的N-H和Si-H键,虽然膜层的热稳定性很好,但由于膜层具有较多的缺陷,因此其抗氧化性较差,抗离子束损伤性能也不好。对于PECVD薄膜,由于其形成温度较低,膜层中含有大量的N-H和Si-H键,因此膜层的热稳定性和抗离子束损伤性能最差。此外,还发现XPS获得的N/Si原子比和膜层的真实成分校一致,而RBS和AES由于离子束损伤效应,其结果偏低。氮化硅薄膜热稳定性差和离子束损伤的本质均因氯化硅的脱氮分解。热氧化的本质是膜层中自由硅和气氛中残余氧的氧化反应。  相似文献   

5.
Cross-sections of GaN/AlN/3C-SiC/Si(111) system have been studied by electron microscopy techniques. A nanometer thick buffer layer of silicon carbide on Si(111) substrate was formed using an original solid-phase epitaxy method. The subsequent layers of gallium nitride and aluminum nitride were grown by the method hydride-chloride vapor phase epitaxy. The resulting GaN layers display neither threading dislocations nor cracks on any scale. The main fraction of defects in GaN layers have the form of dislocation pileups that are localized at and oriented parallel to the GaN/AlN interface. The dislocation density in the obtained GaN layers is (1–2) × 109 cm−2, which corresponds to a minimum level reported in the available literature. The buffer AlN layer contains nanopores, which reduce the level of stresses at the GaN/AlN interface and thus almost completely inhibit the formation of threading dislocations.  相似文献   

6.
We propose a Metal-Oxide-Nitride-Oxide-Silicon (MONOS) structure whose blocking oxide is formed by radical oxidation on the silicon nitride (Si3N4) layer to improve the electrical and reliability characteristics. We directly compare the electrical and reliability properties of the MONOS capacitors with two different blocking oxide (SiO2) layers, which are called a "radical oxide" grown by the radical oxidation and a "CVD oxide" deposited by chemical vapor deposition (CVD) respectively. The MONOS capacitor with a radical oxide shows a larger C-V memory window of 3.6 V at sweep voltages from 9 V to -9 V, faster program/erase speeds of 1 micros/1 ms at bias voltages of -6 V and 8 V, a lower leakage current of 7 pA and a longer data retention, compared to those of the MONOS capacitor with a CVD oxide. These improvements have been attributed to both high densification of blocking oxide film and increased nitride-related memory traps at the interface between the blocking oxide and Si3N4 layer by radical oxidation.  相似文献   

7.
D. Resnik  J. Kova?  U. Aljan?i?  A. Zalar 《Vacuum》2007,82(2):162-165
The interface structure and the adhesion of direct current (DC) sputtered Ti/Ni/Ag thin film metallization on n+Si substrate has been investigated. It is shown that beside the chemical preparation of the Si surface prior to sputtering also thermal annealing of sputtered metal structure has strong influence on the adhesion of sputtered layers to the silicon. Energy dispersive X-ray spectroscopy (EDS) analysis were performed on both, the delaminated layers and on the silicon surface to determine the exact delaminating interface, which was found to be between Si and Ti layer. Auger electron spectroscopy (AES) profile revealed no traces of contamination at Ti-Si interface. Measured high tensile residual stress, particularly in sputtered Ni layer (1.4-2 GPa) is found to reduce the metal stack adhesion.  相似文献   

8.
Nanopore formation in silicon films has previously been demonstrated using rapid thermal crystallization of ultrathin (15 nm) amorphous Si films sandwiched between nm‐thick SiO2 layers. In this work, the silicon dioxide barrier layers are replaced with silicon nitride, resulting in nanoporous silicon films with unprecedented pore density and novel morphology. Four different thin film stack systems including silicon nitride/silicon/silicon nitride (NSN), silicon dioxide/silicon/silicon nitride (OSN), silicon nitride/silicon/silicon dioxide (NSO), and silicon dioxide/silicon/silicon dioxide (OSO) are tested under different annealing temperatures. Generally the pore size, pore density, and porosity positively correlate with the annealing temperature for all four systems. The NSN system yields substantially higher porosity and pore density than the OSO system, with the OSN and NSO stack characteristics fallings between these extremes. The higher porosity of the Si membrane in the NSN stack is primarily due to the pore formation enhancement in the Si film. It is hypothesized that this could result from the interfacial energy difference between the silicon/silicon nitride and silicon/silicon dioxide, which influences the Si crystallization process.  相似文献   

9.
Gallium nitride (GaN) films and Aluminium nitride (AlN) layers were deposited on SiC/Si (111) substrates by an alternating source gas supply or an intermittent supply of a source gas such as ammonia (NH3), trimethylgallium (TMG) or trimethylaluminum (TMA) in a hot-mesh chemical vapor deposition (CVD) apparatus. The AlN layer was deposited as a buffer layer using NH3 and TMA on a SiC layer grown by carbonization on Si substrates using propane (C3H8). GaN films were grown on an AlN layer by a reaction between NHx radicals generated on a ruthenium (Ru) coated tungsten (W)-mesh and TMG molecules. An alternating source gas supply or an intermittent supply of one of the source gases during the film growth are expected to be effective for the suppression of gas phase reactions and for the enhancement of precursor migration on the substrate surface. By the intermittent supply of alkylmetal gas only during the growth of the AlN layer, the defect generation in the GaN films was reduced. GaN film growth by intermittent supply on an AlN buffer layer, however, did not lead to the improvement of the film quality.  相似文献   

10.
Tungsten and tungsten nitride layers have been deposited by plasma-enhanced chemical vapor deposition (PECVD). Tungsten layers deposited at low deposition temperatures T150 °C using this method showed good uniformity over dielectric and silicon substrate areas. As the deposition temperature decreased, the silicon consumed during the deposition reaction decreased, at T150 °C no silicon consumption was measurable. PECVD tungsten nitride layers were deposited directly on oxidized silicon substrates with no requirement for a nucleation layer. As the NH3 flow rate was increased, whilst maintaining all other parameters constant, deposited layers were found to change from metal tungsten to tungsten-rich amorphous layer to W2N. The resistivity of the layers was found to be high compared to published literature for higher-temperature deposited layers. The high resistivity is attributed to the incorporation of fluorine into the layer at low deposition temperatures. A deposition process was established for smooth amorphous tungsten-rich W x N layers at 150 °C.  相似文献   

11.
Thermal oxidation was used to remove the subsurface damage of silicon carbide (SiC) surfaces. The anisotrow of oxidation and the composition of oxide layers on Si and C faces were analyzed. Regular pits were observed on the surface after the removal of the oxide layers, which were detrimental to the growth of high quality epitaxial layers. The thickness and composition of the oxide layers were characterized by Rutherford backscat-tering spectrometry (RBS) and X-ray photoelectron spectroscopy (XPS), respectively. Epitaxial growth was performed in a metal organic chemical vapor deposition (MOCVD) system. The substrate surface morphol-ogy after removing the oxide layer and gallium nitride (GaN) epilayer surface were observed by atomic force microscopy (AFM). The results showed that the GaN epilayer grown on the oxidized substrates was superior to that on the unoxidized substrates.  相似文献   

12.
The idea of a new method for growing gallium nitride (GaN) epilayers in semi-polar direction by hydride-chloride vapor-phase epitaxy (HVPE) is disclosed. We propose to use Si(210) substrates with the first buffer layer of silicon carbide (3C-SiC) and the second buffer layer of aluminum nitride (AlN). It is experimentally demonstrated for the first time that, under conditions of anisotropic deformation in the GaN/AlN/3C-SiC/Si(210) structure, a GaN epilayer exhibits growth in semi-polar directions.  相似文献   

13.
J.H. Yang  D.V. Dinh 《Thin solid films》2009,517(17):5057-5060
A gallium nitride (GaN) epitaxial layer was grown by metal-organic chemical vapor deposition (MOCVD) on Si (111) substrates with aluminum nitride (AlN) buffer layers at various thicknesses. The AlN buffer layers were deposited by two methods: radio frequency (RF) magnetron sputtering and MOCVD. The effect of the AlN deposition method and layer thickness on the morphological, structural and optical properties of the GaN layers was investigated. Field emission scanning electron microscopy showed that GaN did not coalesce on the sputtered AlN buffer layer. On the other hand, it coalesced with a single domain on the MOCVD-grown AlN buffer layer. Structural and optical analyses indicated that GaN on the MOCVD-grown AlN buffer layer had fewer defects and a better aligned lattice to the a- and c-axes than GaN on the sputtered AlN buffer layer.  相似文献   

14.
High quality non porous silicon nitride layers were deposited by hot wire chemical vapour deposition at substrate temperatures lower than 110 degrees C. The layer properties were investigated using FTIR, reflection/transmission measurements and 1:6 buffered HF etching rate. A Si-H peak position of 2180 cm(-1) in the Fourier transform infrared absorption spectrum indicates a N/Si ratio around 1.2. Together with a refractive index of 1.97 at a wavelength of 632 nm and an extinction coefficient of 0.002 at 400 nm, this suggests that a transparent high density silicon nitride material has been made below 110 degrees C, which is compatible with polymer films and is expected to have a high impermeability. To confirm the compatibility with polymer films a silicon nitride layer was deposited on poly(glycidyl methacrylate) made by initiated chemical vapour deposition, resulting in a highly transparent double layer.  相似文献   

15.
Graphitic carbon nitrides were synthesized starting from melamine and uric acid. Uric acid was chosen because it thermally decomposes, and reacts with melamine by condensation at temperatures in the range of 400–600 °C. The reagents were mixed with alumina and subsequently the samples were treated in an oven under nitrogen flux. Alumina favored the deposition of the graphitic carbon nitrides layers on the exposed surface. This method can be assimilated to an in situ chemical vapor deposition (CVD). Infrared (IR) spectra, as well as X-ray diffraction (XRD) patterns, are in accordance with the formation of a graphitic carbon nitride with a structure based on heptazine blocks. These carbon nitrides exhibit poor crystallinity and a nanometric texture, as shown by transmission electron microscopy (TEM) analysis. The thermal degradation of the graphitic carbon nitride occurs through cyano group formation, and involves the bridging tertiary nitrogen and the bonded carbon, which belongs to the heptazine ring, causing the ring opening and the consequent network destruction as inferred by connecting the IR and X-ray photoelectron spectroscopy (XPS) results. This seems to be an easy and promising route to synthesize graphitic carbon nitrides. Our final material is a composite made of an alumina core covered by carbon nitride layers.  相似文献   

16.
A dense silicon carbide matrix composite reinforced by Hi-Nicalon fibers CVD coated with boron nitride and silicon carbide was fabricated by slurry impregnation and subsequent reaction sintering with molten silicon. The effect of the structure and the thickness of the silicon carbide layer of the fiber coating on the mechanical properties of the composite were investigated. That is, three types of silicon carbide layers, namely a dense structure with a thickness of 0.15 m and two porous structures with a thickness of 0.15 m and 0.48 m, respectively, were investigated. As a result, excellent strength property of ceramic matrix composite (CMC) was obtained in the case of the dense silicon carbide (SiC) layer. The thickness effect of the SiC layer on the strength was smaller than that of the structure.  相似文献   

17.
Silicon quantum dot superlattice was fabricated by alternating deposition of silicon rich nitride (SRN) and Si3N4 layers using RF magnetron co-sputtering. Samples were then annealed at temperatures between 800 and 1,100 degrees C and characterized by grazing incident X-ray diffraction (GIXRD), transmission electron microscopy (TEM), Raman spectroscopy, and Fourier transform infrared spectroscopy (FTIR). GIXRD and Raman analyses show that the formation of silicon quantum dots occurs with annealing above 1,100 degrees C for at least 60 minutes. As the annealing time increased the crystallization of silicon quantum dots was also increased. TEM images clearly showed SRN/Si3N4 superlattice structure and silicon quantum dots formation in SRN layers after annealing at 1,100 degrees C for more than 60 minutes. The changes in FTIR transmission spectra observed with annealing condition corresponded to the configuration of Si-N bonds. Crystallization of silicon quantum dots in a silicon nitride matrix started stabilizing after 60 minutes' annealing and approached completion after 120 minutes'. The systematic investigation of silicon quantum dots in a silicon nitride matrix and their properties for solar cell application are presented.  相似文献   

18.
Joining of Inconel 718 alloys to silicon nitrides using Ag–27Cu–3Ti alloys was performed to investigate the microstructural features of interfacial phases and their effect on joint strength. The Si3N4/Inconel 718 alloy joints had a low shear strength in the range 70.4–46.1 MPa on average, depending on joining temperature and time. When the joining time was held for 1.26 ks at 1063 K, shear, tension, and four-point bending strength were 70.4, 129.7, and 326.5 MPa on average. The microstructures of the joints typically consisted of six types of phases. They were TiN and Ti5Si4 between silicon nitride and filler metal, a copper- and silver-rich phase, island-shaped Ti–Cu phase, a Ti–Cu–Ni alloy layer between filler and base metal, and diffusion of titanium into the Inconel 718 alloys. With increasing joining temperature, the thickness increase of the Ti–Cu–Ni alloy layer was much greater than that of the reaction layer. Thus the diffusion rate of titanium into the base metal was much greater than the reaction rate with silicon nitride. This behaviour of titanium results in the formation of a Ti–Cu–Ni alloy layer in all the joints. The formation of these layers was the cause of the strength degradation of the Si3N4/Inconel 718 alloy joints. This fact was supported by the analyses of fracture path after four-point bending strength tests.  相似文献   

19.
Capacitors with two kinds of lower electrodes were fabricated and their effects evaluated on the electrical characteristics of oxide–nitride–oxide (ONO) film. One of the electrodes was made of amorphous silicon film chemically deposited using a gas mixture of Si2H6–PH3; the other was made of poly-Si film deposited by SiH4 decomposition and doped by As+ ion implantation. The ONO thin dielectric layer was composed of natural oxide, CVD silicon nitride and thermal oxide formed on the silicon nitride. The capacitance, the leakage current, the dielectric breakdown field and the time-dependent dielectric breakdown (TDDB) were tested to evaluate the electrical properties of the capacitors. The leakage current and the dielectric breakdown voltage showed similar values between the two capacitors, whereas the TDDB under negative bias showed a great difference. This indicates that, with respect to electrical properties, the integrity of the oxide grown on the in situ P-doped amorphous silicon is better than the oxide grown on the As+ ion-implanted poly-Si. What is more, phosphorus in the amorphous silicon did not lead to any problems with junction depth, even after post heat treatment at 950°C. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

20.
A new set of heat spreader coatings consisting of multilayers of diamond/AlN/diamond were deposited on high heat capacity substrates of molybdenum and silicon nitride. Bonding of the heat spreaders to the device wafers using gold-tin eutectic solder was carried out after metallization layers of titanium, gold and copper were deposited on diamond. Prior to bonding, backside of the silicon wafers was also metallized with titanium, gold and copper and the gallium arsenide wafers with titanium, copper-germanium alloy and gold. Characterization of the multilayer diamond films was carried out by Raman spectroscopy, X-ray diffraction and scanning electron microscopy. The bonded wafers were tested for adhesion strength, resistance against peeling due to thermal cycling and failure under stress. Further, the bonded regions were characterized by scanning electron microscopy, energy dispersive spectroscopy and X-ray mapping of different elements. The heat spreader characteristics of the single layer diamond and the multilayer diamond substrates were tested by infrared imaging. The results illustrate that the multilayer diamond heat spreader coatings provide better heat dissipation and also possess better adhesion strength and resistance against peeling under thermal cycling. These novel multilayer diamond/AlN/diamond heat spreaders are expected to considerably improve the life of high frequency power devices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号