首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 954 毫秒
1.
Biodegradable poly(l-lactide) (PLLA)/carboxyl-functionalized multi-walled carbon nanotubes (f-MWNTs) nanocomposites were prepared via solution blending. Scanning electron microscopy observations reveal a fine dispersion of f-MWNTs in the PLLA matrix. The presence of f-MWNTs enhances the crystallization of PLLA in the nanocomposites compared with that of neat PLLA; moreover, the overall crystallization rate of PLLA increases with increasing the f-MWNTs content in the PLLA matrix. The incorporation of f-MWNTs improves the storage modulus of the PLLA/f-MWNTs nanocomposites, with this effect being more pronounced at lower f-MWNTs content. The exciting aspect of this research is the enhanced hydrolytic degradation of PLLA after nanocomposites preparation with f-MWNTs, which may be of great interest for its wide practical application.  相似文献   

2.
Biodegradable poly(l-lactide) (PLLA)/octamethyl-polyhedral oligomeric silsesquioxanes (ome-POSS) nanocomposites were prepared via simple melt compounding at various ome-POSS loadings in this work. Scanning and transmission electron microscopy observations indicate that ome-POSS were homogeneously dispersed in the PLLA matrix. Effect of ome-POSS on the nonisothermal crystallization behavior, isothermal melt crystallization kinetics, spherulitic morphology, crystal structure, dynamic mechanical properties, and thermal stability of PLLA in the nanocomposites was investigated in detail. It is found that the presence of ome-POSS enhances both nonisothermal cold and melt crystallization of PLLA in the nanocomposites relative to neat PLLA. The overall isothermal melt crystallization rates are faster in the PLLA/ome-POSS nanocomposites than in neat PLLA and increase with increasing the ome-POSS loading; however, the crystallization mechanism of PLLA remains unchanged. The nucleation density of PLLA spherulites is enhanced, while the crystal structure of PLLA is not modified in the PLLA/ome-POSS nanocomposites. The storage modulus has been apparently improved in the PLLA/ome-POSS nanocomposites with respect to neat PLLA, whereas the glass-transition temperatures vary slightly between neat PLLA and the PLLA/ome-POSS nanocomposites. The thermal stability of PLLA matrix is reduced slightly in the PLLA/ome-POSS nanocomposites.  相似文献   

3.
The effect of multi-walled carbon nanotubes (MWNTs), both amino-functionalized (f-MWNTs) and unfunctionalized (p-MWNTs) on the curing behavior of epoxy resin (EP) cured with triethanolamine (TEA), was investigated using differential scanning calorimetry (DSC). Because the triethylenetetramine (TETA) grafted on the f-MWNTs could act as curing agent and the produced tertiary amine as negative ionic catalysts of curing reaction of EP, so the activation energy of the EP/TEA system was decreased by the addition of f-MWNTs. Viscosity played a key role in the curing behavior of the EP/TEA/MWNTs system, for high viscosity of the EP/TEA/MWNTs system could hinder the motion of the functional groups. The curing heat in EP/TEA/f-MWNTs (weight ratio 1/0.1/0.01) system was higher than the neat EP/TEA (weight ratio 1/0.1) system, while the curing heat in EP/TEA/p-MWNTs (weight ratio 1/0.1/0.01) was lower than the neat system. When the content of f-MWNTs was increased to 2 phr (weight ratio of 1/0.1/0.02), the curing heat became lower than that of the neat EP/TEA system, which was the result of the higher viscosity of the EP/f-MWNTs/TEA system. Since the curing heat indicated the curing degree of the system generally, the addition of the f-MWNTs was thought to increase the curing degree of the epoxy matrix at a relatively low content.  相似文献   

4.
以纳米层状双羟基金属氧化物(LDHs)为引发剂,通过原位聚合的方法在纳米LDHs表面接枝上了聚己内酯(PCL)分子链(LDHs-g-PCL),并将其与纯PCL采用溶液浇筑法制备出LDHs/PCL纳米复合材料,研究了LDHs-g-PCL的化学结构,纳米复合材料的结晶特性、力学性能、阻隔性能等。结果表明,成功制备出化学键合牢固的PCL包覆LDHs;随着LDHs-g-PCL的加入,复合材料的结晶度呈现出逐渐升高的趋势,但异相成核作用效率有一定程度减弱。LDHs-g-PCL的质量分数为10%时,复合材料的拉伸强度和断裂伸长率均达到最大值,相比纯PCL分别提高了31%和37%。LDHs-g-PCL的质量分数为50%时,复合材料对氧气的渗透性达到最低值,相比纯PCL降低程度高达78%,这与层状结构的LDHs显著延长氧气分子在纳米复合材料的曲折渗透路径必不可分。基于Nielsen的相对渗透理论来优化纳米复合材料的渗透模型,结果表明,LDHs/PCL纳米复合材料阻隔性能的提高不仅归结于层状LDHs发挥的阻隔效应,而且更重要的是LDHs-g-PCL加入引起的体积效应。  相似文献   

5.
不同成膜工艺对PCL结晶及微生物降解性能的影响   总被引:1,自引:0,他引:1  
将压延成膜和溶剂成膜制备的聚ε-己内酯(PCL)膜放入降解液进行100d的生物降解,以研究不同成膜工艺对PCL降解性和降解前后结晶的影响。采用显微镜观察降解前后薄膜表面形态变化;通过广角X射线衍射法(WAXD)表征其降解前后结晶变化;利用凝胶渗透色谱(GPC)测定降解过程中PCL相对分子质量和分子量分布的变化。研究结果表明,溶剂成膜工艺可提高PCL亲水性,增大结晶尺寸,提高PCL降解性;而压延成膜工艺使膜表面致密,结晶尺寸减小,但对结晶形态和结晶度影响不大,降解后PCL晶形均未发生大的变化,结晶度有所下降。  相似文献   

6.
Non-isothermal crystallization behavior of poly(ε-caprolactone) (PCL)-grafted multi-walled carbon nanotubes (MWNTs) was studied in order to determine the effects of functionalized MWNTs (f-MWNTs) on its crystallization behavior. Differential scanning calorimeter measurements showed that an introduction of f-MWNTs into the PCL molecules induced heterogeneous nucleation and the crystal growth process was significantly affected. X-ray diffraction showed a decrease in the crystallinity of composites with the addition of f-MWNTs in PCL, likely due to the occurrence of more heterogeneous nucleation induced by f-MWNTs in the samples. The activation energy for crystallization of PCL drastically reduced with the presence of 2 wt.% f-MWNTs in the samples and increased slightly with increasing content of f-MWNTs. A spherulite structure of PCL-grafted MWNTs with MWNTs at the center was developed, clearly indicating the nucleating action of MWNTs in the crystallization process. The experimental data were also analyzed using various kinetic models e.g., Avrami, Tobin, Ozawa, etc.  相似文献   

7.
Biodegradable poly(l-lactide) (PLLA)/polyhedral oligomeric silsesquioxanes (POSS) nanocomposite was prepared via solution casting method for the first time in this work. Scanning electron microscopy observation indicates that POSS were homogeneously dispersed in the PLLA matrix. Effect of POSS on the crystal structure, crystallization kinetics, dynamical properties, and hydrolytic degradation of PLLA in the nanocomposite was investigated in detail. It is found that the presence of POSS has enhanced significantly the crystallization rate, improved mechanical properties and accelerated the hydrolytic degradation of PLLA in the nanocomposite with respect to neat PLLA.  相似文献   

8.
This article addresses the effect of nano-SiO2 on the morphology, crystallization and dynamic mechanical properties of polyamide 66. The influence of nano-SiO2 on the tensile fracture morphology of the nanocomposites was studied by scanning electron microscopy (SEM), which suggested that the nanocomposites revealed an extensive plastic stretch of the matrix polymer. The crystallization behaviour of polyamide 66 and its nanocomposites were studied by differential scanning calorimetry (DSC). DSC nonisothermal curves showed an increase in the crystallization temperature along with increasing degree of crystallinity. Dynamic mechanical properties (DMA) indicated significant improvement in the storage modulus and loss modulus compared with neat polyamide 66. The tan ä peak signifying the glass-transition temperature of nanocomposites shifted to higher temperature.  相似文献   

9.
《Composites Part B》2013,45(1):613-619
Multiwalled carbon nanotube/polyurethane (MWNT/PU) composites were prepared by electrospinning and solution casting. The morphological and thermal properties, and mechanical performance of the nanofiber and film composites were characterized and compared. The tensile strength of neat PU film was 9-fold higher than that of neat PU nanofibrous mat. The incorporation of MWNTs increased the tensile strength and modulus of the composite nanofibers by 69% and 140%, respectively, and 62% and 78%, respectively for composite films. The MWNT/PU composites showed an improved thermal degradation behavior, with the incorporation of low MWNT content in the composites.  相似文献   

10.
In the present study, amino-silane modified layered organosilicates were used to reinforce cyclic olefin copolymer to enhance the thermal, mechanical and moisture impermeable barrier properties. The optimum clay loading (4%) in the nanocomposite increases the thermal stability of the film while further loading decreases film stability. Water absorption behavior at 62 °C was carried out and compared with the behavior at room temperature and 48 °C. The stiffness of the matrix increases with clay content and the recorded strain to failure for the composite films was lower than the neat film. Dynamic mechanical analysis show higher storage modulus and low loss modulus for 2.5–4 wt% clay loading. Calcium degradation test and device encapsulation also show the evidence of optimum clay loading of 4 wt% for improved low water vapor transmission rates compared to other nanocomposite films.  相似文献   

11.
Polycaprolactone (PCL) was reinforced with natural fibres as they not only permit a substantial reduction of the material costs, but also play a role as reinforcement in mechanical properties. This work was focused on the estimation of mechanical and thermal behaviour based on PCL and Pine Cone particles (PCP) filler at different weight percentages (0, 5, 10, 15, 30 and 45 wt%). Tests results indicated considerable improvement in mechanical properties, corresponding to a gain in impact strength and % elongation of 6 and 9.2% at 15 wt% particle loading, respectively. Some decrease in thermal stability was observed for composites with increasing filler content where as composite at 15% PCP was not significantly affected. Lower melting and crystallization enthalpies and higher crystallinity values were obtained for bio-composites compared with neat PCL. Some decrease in thermal stability and increase in oxygen and water vapour barrier properties were also observed for composites with increasing filler content.  相似文献   

12.
The influence of surface modifications on the mechanical properties of epoxy‐hexagonal boron nitride nanoflake (BNNF) nanocomposites is investigated. Homogeneous distributions of boron nitride nanoflakes in a polymer matrix, preserving intrinsic material properties of boron nitride nanoflakes, is the key to successful composite applications. Here, a method is suggested to obtain noncovalently functionalized BNNFs with 1‐pyrenebutyric acid (PBA) molecules and to synthesize epoxy–BNNF nanocomposites with enhanced mechanical properties. The incorporation of noncovalently functionalized BNNFs into epoxy resin yields an elastic modulus of 3.34 GPa, and 71.9 MPa ultimate tensile strength at 0.3 wt%. The toughening enhancement is as high as 107% compared to the value of neat epoxy. The creep strain and the creep compliance of the noncovalently functionalized BNNF nanocomposite is significantly less than the neat epoxy and the nonfunctionalized BNNF nanocomposite. Noncovalent functionalization of BNNFs is effective to increase mechanical properties by strong affinity between the fillers and the matrix.  相似文献   

13.
Graphene-reinforced cyclic butylene terephthalate (CBT) matrix nanocomposites were prepared and characterized by mechanical and thermal methods. These nanocomposites containing different amounts of graphene (up to 5 wt%) were prepared by melt mixing with CBT that was polymerized in situ during a subsequent hot pressing. The nanocomposites and the neat polymerized CBT (pCBT) as reference material were subjected to differential scanning calorimetry, dynamical mechanical analysis, thermogravimetrical analysis, and heat conductivity measurements. The dispersion of the grapheme nanoplatelets was characterized by transmission electron microscopy. It was established that the partly exfoliated graphene worked as nucleating agent for crystallization, acted as very efficient reinforcing agent (the storage modulus at room temperature was increased by 39 and 89 % by incorporating 1- and 5-wt% graphene, respectively). Graphene incorporation markedly enhanced the heat conductivity but did not influence the TGA behavior, except the ash content, due to the not proper exfoliation except the ash content.  相似文献   

14.
The multi-walled carbon nanotube (MWNT) reinforced thermoplastic polyurethane (TPU) nanocomposites were prepared through melt compounding method followed by compression molding. The spectroscopic study indicated that a strong interfacial interaction was developed between carbon nanotube (CNT) and the TPU matrix in the nanocomposites. The microscopic observation showed that the CNTs were homogeneously dispersed throughout the TPU matrix well apart from a few clusters. The results from thermal analysis indicated that the glass transition temperature (Tg) and storage modulus (E′) of the nanocomposites were increased with increase in CNTs content and their thermal stability were also improved in comparison with pure TPU matrix. The rheological analysis showed the low frequency plateau of shear modulus and the shear thinning behavior of the nanocomposites. The electrical behaviors of the nanocomposites are increased with increase in weight percent (wt%) of CNT loading. The mechanical properties of nanocomposites were substantially improved by the incorporation of CNTs into the TPU matrix.  相似文献   

15.
This article describes the thermal and thermomechanical properties of poly(butylene succinate) (PBS) and its nanocomposites. PBS nanocomposites with three different weight ratios of organically modified synthetic fluorine mica (OMSFM) have been prepared by melt-mixing in a batch mixer at 140 degrees C. The structure and morphology of the nanocomposites were characterized by X-ray diffraction (XRD) analyses and transmission electron microscopy (TEM) observations that reveal the homogeneous dispersion of the intercalated silicate layers into the PBS matrix. The thermal properties of pure PBS and the nanocomposite samples were studied by both conventional and temperature modulated differential scanning calorimetry (DSC) analyses, which show multiple melting behavior of the PBS matrix. The investigation of the thermomechanical properties was performed by dynamic mechanical analysis. Results reveal significant improvement in the storage modulus of neat PBS upon addition of OMSFM. The tensile modulus of neat PBS is also increased substantially with the addition of OMSFM, however, the strength at yield and elongation at break of neat PBS systematically decreases with the loading of OMSFM. The thermal stability of the nanocomposites compared to that of the pure polymer sample was examined under both pyrolytic and thermo-oxidative environments. It is shown that the thermal stability of PBS is increased moderately in the presence of 3 wt% of OMSFM, but there is no significant effect on further silicate loading in the oxidative environment. In the nitrogen environment, however, the thermal stability systematically decreases with increasing clay loading.  相似文献   

16.
以苯乙烯-丙烯腈共聚物/聚己内酯(SAN/PCL)复合材料为基体,导电炭黑(CB)为填料,采用熔融共混的方法制备了SAN/PCL/CB纳米复合材料.考察了CB含量对SAN/PCL/CB纳米复合材料流变特性、力学性能、电学性能和微观形貌的影响.结果表明,CB的加入能够诱导体系发生相分离,随着CB含量的增加,SAN/PCL...  相似文献   

17.
Epoxy nanocomposites reinforced with recycled cellulose fibres (RCFs) and organoclay platelets (30B) have been fabricated and investigated in terms of WAXS, TEM, mechanical properties and TGA. Results indicated that mechanical properties generally increased as a result of the addition of nanoclay into the epoxy matrix. The presence of RCF significantly enhanced flexural strength, fracture toughness, impact strength and impact toughness of the composites. However, the inclusion of 1 wt.% clay into RCF/epoxy composites considerably increased the impact strength and toughness. The presence of either nanoclay or RCF accelerated the thermal degradation of neat epoxy, but at high temperature, thermal stability was enhanced with increased char residue over neat resin. The failure micromechanisms and energy dissipative processes in these nanocomposites were discussed in terms of microstructural observations.  相似文献   

18.
This study reports the preparation and physical properties of biodegradable nanocomposites fabricated using poly(l-lactide) (PLLA) and magnesium/aluminum layered double hydroxide (MgAl-LDH). The MgAl-LDH with molar ratio of Mg/Al = 2 were synthesized by the co-precipitation method. In order to improve the chemical compatibility between PLLA and LDH, the surface of LDH was organically-modified by polylactide with carboxyl end group (PLA–COOH) using ion-exchange process. Then, the PLLA/LDH nanocomposites were prepared by solution intercalation of PLLA into the galleries of PLA–COOH modified LDH (P-LDH) in tetrahydrofuran solution. Both X-ray diffraction data and Transmission electron microscopy images of PLLA/P-LDH nanocomposites indicate that the P-LDHs are randomly dispersed and exfoliated into the PLLA matrix. Mechanical properties of the fabricated 1.2 wt.% PLLA/P-LDH nanocomposites show significant enhancements in the storage modulus when compared to that of neat PLLA. Adding more P-LDH into PLLA matrix induced a decrease in the storage modulus of PLLA/P-LDH nanocomposites, probably due to the excessive content of PLA–COOH moleculars with low mechanical properties. The thermal stability and degradation activation energies of the PLLA and PLLA/P-LDH nanocomposites can also be discussed.  相似文献   

19.
In this work, polymer-based nanocomposite films formed from biphenol poly(arylene ether nitrile) (BP-PEN) and multiwalled carbon nanotubes (MWCNTs) were successfully prepared by the solution casting method combined with continuous ultrasonic dispersion technology. The micromorphology, thermal, mechanical and dielectric properties of the nanocomposite films were investigated in detail. Non-isothermal crystallization behavior studies indicate that the presence of MWCNTs enhances the crystallization of BP-PEN in the nanocomposites, which is consistent with the XRD analysis. Most importantly, it could be observed that the film containing 0.8 wt% MWCNTs reached the maximum crystallinity. Although, incorporation of MWCNTs did not obviously increase the mechanical of the films, all the nanocomposite films still exhibited excellent mechanical strength. The SEM micrographs of the nanocomposite films showed that the MWCNTs were uniformly coated by BP-PEN crystals, and indicating significantly improved nucleation ability of MWCNTs for polymer crystallization.  相似文献   

20.
Ultra-high molecular weight polyethylene (UHMWPE)-based conductive nanocomposites with reduced percolation and tunable piezoresistive behavior were prepared via solution mixing followed by compression molding using carbon nanotubes (CNT) and graphene nanoplatelets (GNP). The effect of varying wt% of GNP with fixed CNT content (0.1 wt%) on the mechanical, electrical, thermal and piezoresistive properties of UHMWPE nanocomposites was evaluated. The combination of CNT and GNP enhanced the dispersion in UHMWPE matrix and lowered the probability of CNT aggregation as GNP acted as a spacer to separate the entanglement of CNT with each other. This has allowed the formation of an effective conductive path between GNP and CNT in UHMWPE matrix. The thermal conductivity, degree of crystallinity and degradation temperature of the nanocomposites increased with increasing GNP content. The elastic modulus and yield strength of the nanocomposites were improved by 37% and 33%, respectively, for 0.1/0.3 wt% of CNT/GNP compared to neat UHMWPE. The electrical conductivity was measured using four-probe method, and the lowest electrical percolation threshold was achieved at 0.1/0.1 wt% of CNT/GNP forming a nearly two-dimensional conductive network (critical value, t = 1.20). Such improvements in mechanical and electrical properties are attributed to the synergistic effect of the two-dimensional GNP and one-dimensional CNT which limits aggregation of CNTs enabling a more efficient conductive network at low wt% of fillers. These hybrid nanocomposites exhibited strong piezoresistive response with sensitivity factor of 6.2, 15.93 and 557.44 in the linear elastic, inelastic I and inelastic II regimes, respectively, for 0.1/0.5 wt% of CNT/GNP. This study demonstrates the fabrication method and the self-sensing performance of CNT/GNP/UHMWPE nanocomposites with improved properties useful for orthopedic implants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号