首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 125 毫秒
1.
针对目前图像处理算法日益复杂,对CPU的性能要求越来越高,而传统的基于CPU的图像处理方法无法满足需求的情况,本文对基于统一计算设备架构(CUDA)的图形处理器(GPU)在图形处理方面的算法进行研究和实现。通过充分利用GPU突出的并行处理能力,采用CUDA技术,利用C++语言实现相关算法。研究并设计高斯模糊处理算法、彩色负片处理算法、透明合并处理算法的GPU并行运算流程,并通过与CPU实现相同效果的性能的对比,证明基于GPU图像处理算法的高效性。  相似文献   

2.
陈风  田雨波  杨敏 《计算机科学》2014,41(9):263-268
应用图形处理器(GPU)来加速粒子群优化(PSO)算法并行计算时,为突出其加速性能,经常有文献以恶化CPU端PSO算法性能为代价。为了科学比较GPU-PSO算法和CPU-PSO算法的性能,提出用"有效加速比"作为算法的性能指标。文中给出的评价方法不需要CPU和GPU端粒子数相同,将GPU并行算法与最优CPU串行算法的性能作比较,以加速收敛到目标精度为准则,在统一计算设备架构(CUDA)下对多个基准测试函数进行了数值仿真实验。结果表明,在GPU上大幅增加粒子数能够加速PSO算法收敛到目标精度,与CPU-PSO相比,获得了10倍以上的"有效加速比"。  相似文献   

3.
作为应用软件模型和计算机硬件之间的桥梁,编程模型在计算机领域的重要性不言而喻.但随着具备细粒度并行计算能力的图形处理器(GPU)进入主流市场,与之相适应的编程模型发展却相对滞后.Nvidia在GeForce 8系列显卡上推出的统一计算设备架构(CUDA)技术,使得通用计算图形处理单元(GPGPU)从图形硬件流水线和高级绘制语言中解放出来,开发人员无须掌握图形学编程方法即可在单任务多数据模式(SIMD)下完成高性能并行计算.论文从特性、组成和并行架构等几个方面对CUDA并行计算模型进行了研究,充分表明基于GPU进行高性能并行计算,是适应目前大规模计算需求的一个重要发展途径.  相似文献   

4.
5.
Kirchhoff叠前时间偏移是地震数据处理中最耗时的常用模块之一。为加快计算和显示速度,针对CUDA平台多处理器流水线特性,对传统Kirchhoff叠前时间偏移算法在CUDA平台上进行了重新设计,包括基于CUDA的Kirchhoff叠前时间偏移算法、基于CUDA的纵波波动方程算法和GPU与CPU间的通信算法三个子算法。所有算法在NVIDIA GeForce 8800 GT系统上编译实现,通过对比相同数据在Intel Core2Due CPU 2.0 GHz的地震偏移,综合分析和实验结果表明,基于CUDA  相似文献   

6.
基于CUDA的地震数据相干体并行算法   总被引:5,自引:0,他引:5  
在地震探测解释方面,运用相干体技术可以清楚地识别断层和地层特征。由于相干体是通过三维地震数据体计算得到,传统方法难以满足计算需求。基于CUDA平台,提出了一种并行相干体算法,该算法可加速相干体算法中的矩阵相乘计算。理论分析和配有Intel Core2Due CPU和NVIDIA GeForce 8800 GT显卡的实验结果表明:基于GPU的并行相干体算法可取得理想的线性加速比,提高系统的计算效率。  相似文献   

7.
针对SKINNY加密算法在中央处理器(CPU)下实现效率偏低的问题,提出一种基于图形处理器(GPU)的快速实现方法.首先,结合SKINNY算法的结构特征提出优化方案,将5个分步操作优化整合为1个整体运算;然后,分析该算法的电子密码本(ECB)模式和计数器(CTR)模式的特性,并给出并行粒度、内存分配等并行设计方案.实验...  相似文献   

8.
在热传导算法中,使用传统的CPU串行算法或MPI并行算法处理大批量粒子时,存在执行效率低、处理时间长的问题。而图形处理单元(GPU)具有大数据量并行运算的优势,为此,在统一计算设备架构(CUDA)并行编程环境下,采用CPU和GPU协同合作的模式,提出并实现一个基于CUDA的热传导GPU并行算法。根据GPU硬件配置设定Block和Grid的大小,将粒子划分为若干个block,粒子输入到GPU显卡中并行计算,每一个线程执行一个粒子计算,并将结果传回CPU主存,由CPU计算出每个粒子的平均热流。实验结果表明,与CPU串行算法在时间效率方面进行对比,该算法在粒子数到达16 000时,加速比提高近900倍,并且加速比随着粒子数的增加而加速提高。  相似文献   

9.
走时计算是叠前时间偏移计算中最耗时的部分,通过分析传统的串行走时算法,发现静态8点插值算法非常适合在GPU上运行。首先利用CUDA技术对静态8点插值算法进行并行化改造,设计静态8点并行插值算法,然后测试其正确性,统计其相对误差情况。实验表明此算法比工业生产上的动态插值算法更准确,最后我们利用体偏作性能测试。试验结果表明,运行在GPU上的静态8点并行插值算法内核性能是运行在CPU上的动态插值算法内核的22.76倍。这说明,静态8点并行插值算法适合进行走时计算,并且可以应用于工业生产上。  相似文献   

10.
大尺度、高分辨率数字地形数据应用需求的增长,给计算密集型的累积汇流等数字地形分析算法带来了新的挑战。针对CPU/GPU(Graphics Processing Unit)异构计算平台的特点,提出了一种基于OpenCL(Open Computing Language)的多流向累积汇流算法的并行化策略,具有更好的平台独立性和可移植性,简化了CPU/GPU异构平台下的并行应用程序设计。累积汇流并行算法包括时空独立型的流量分配和空间依赖型的累积入流两个过程,均定义为OpenCL内核并交由OpenCL设备并行执行,其中累积入流过程借助流量转移矩阵由递归式转换为迭代式来实现并行计算。与基于流量转移矩阵的并行汇流算法相比,尽管基于单元入度矩阵的并行汇流算法可以降低迭代过程中的计算冗余,但需要采用具有较大延迟的原子操作以及需要更多的迭代次数,在有限的GPU计算资源下,两种算法性能差异不明显。实验结果表明,并行累积汇流算法在NVIDIA GeForce GT 650M GPU上获得了较好的加速比,加速性能随格网尺度增加而有所增加,其中流量分配获得了约50~70倍的加速比,累积入流获得了10~20倍的加速比,展示了利用OpenCL在GPU等并行计算设备上进行大规模数字地形分析的潜在优势。  相似文献   

11.
GPU可以快速有效的处理海量数据,因此在近些年成为图形图像数据处理领域的研究热点。针对现有GPU渲染中在处理含有大量相同或相似模型场景时存在资源利用率低下和带宽消耗过大的问题,在原有GPU渲染架构的基础上提出了一种基于CUDA的加速渲染方法。在该方法中,根据现有的GPU渲染模式构建对应的模型,通过模型找出其不足,从而引申出常量内存的概念;然后分析常量内存的特性以及对渲染产生的作用,从而引入基于常量内存控制的方法来实现渲染的加速,整个渲染过程可以通过渲染算法进行控制。实验结果表明,该方法对解决上述问题具有较好的效果,最终实现加速渲染。  相似文献   

12.
为了提高重建图像的速度及质量,利用CUDA(compute unified device architecture)架构下GPU(graphic processing unit)的多核并行运算能力,将光线投射的几何变换、场景遍历和渲染三个步骤在可编程图像硬件中实现,降低模拟所需的时间;利用3D纹理、光线程基元的同步遍历机制及不透明度提前终止,在不影响成像质量的前提下,减少生成最终模拟效果所需的时间。实验结果表明,该算法不仅可以提高重建的速度,而且成像质量较好。  相似文献   

13.
The simulation of electromagnetic (EM) waves propagation in the dielectric media is presented using Compute Unified Device Architecture (CUDA) implementation of finite‐difference time‐domain (FDTD) method on graphic processing unit (GPU). The FDTD formulation in the dielectric media is derived in detail, and GPU‐accelerated FDTD method based on CUDA programming model is described in the flowchart. The accuracy and speedup of the presented CUDA‐implemented FDTD method are validated by the numerical simulation of the EM waves propagating into the lossless and lossy dielectric media from the free space on GPU, by comparison with the original FDTD method on CPU. The comparison of the numerical results of CUDA‐implemented FDTD method on GPU and original FDTD method on CPU demonstrates that the CUDA‐implemented FDTD method on GPU can obtain better application speedup performance with reasonable accuracy. © 2016 Wiley Periodicals, Inc. Int J RF and Microwave CAE 26:512–518, 2016.  相似文献   

14.
基于CUDA的GMM模型快速训练方法及应用   总被引:1,自引:1,他引:0  
由于能够很好地近似描述任何分布,混合高斯模型(GMM)在模式在识别领域得到了广泛的应用.GMM模型参数通常使用迭代的期望最大化(EM)算法训练获得,当训练数据量非常庞大及模型混合数很大时,需要花费很长的训练时间.NVIDIA公司推出的统一计算设备架构(Computed unified device architecture,CUDA)技术通过在图形处理单元(GPU)并发执行多个线程能够实现大规模并行快速计算.本文提出一种基于CUDA,适用于特大数据量的GMM模型快速训练方法,包括用于模型初始化的K-means算法的快速实现方法,以及用于模型参数估计的EM算法的快速实现方法.文中还将这种训练方法应用到语种GMM模型训练中.实验结果表明,与Intel DualCore PentiumⅣ3.0 GHz CPU的一个单核相比,在NVIDIA GTS250 GPU上语种GMM模型训练速度提高了26倍左右.  相似文献   

15.
由于复杂网络的规模越来越大, 在大规模的复杂网络中快速、准确地挖掘出隐藏的社区结构是当前该领域研究的热点问题。目前社区结构挖掘常用的基于快速Newman算法的社区结构挖掘算法之一是一般概率框架方法。以规模日益增大的复杂网络为研究对象, 提出了基于GPGPU的一般概率框架并行算法, 有效地解决了在大规模的复杂网络中快速、准确地挖掘出隐藏的社区结构问题。实验证明, 随着节点数的增加, 该并行算法在不损失准确性的前提下运行效率有所提高, 为复杂网络社区结构挖掘的研究提供了一种高效的解决方案。  相似文献   

16.
在很多新兴应用领域、如传感器网络,实时监控系统等,产生的数据流是不断变化的、连续到达的、数据值可能不确定、且必须被快速处理。其中有些操作,如数据流的实时窗口连接运算,非常消耗时间,这对数据流处理系统的性能提出了严峻的挑战。目前,大多数算法采用软件优化来提高处理速度,但其性能提高有限。利用GPU(图形处理器)的高并行度、多线程、高带宽的并行处理能力,设计了一种软硬件结合的方法来加速处理数据流的窗口连接操作。在CUDA(统一计算架构)下,由CPU控制将内存中的数据传输至GPU存储器中,然后利用多线程进行并行处理。实验验证了提出的方法可以大幅度提高多数据流窗口连接的处理速度,可达到纯软件处理的50倍左右。  相似文献   

17.
基于GPU的并行优化技术*   总被引:2,自引:2,他引:2  
针对标准并行算法难以在图形处理器(GPU)上高效运行的问题,以累加和算法为例,基于Nvidia公司统一计算设备架构(CUDA)GPU介绍了指令优化、共享缓存冲突避免、解循环优化和线程过载优化四种优化方法。实验结果表明,并行优化能有效提高算法在GPU上的执行效率,优化后累加和算法的运算速度相比标准并行算法提高了约34倍,相比CPU串行实现提高了约70倍。  相似文献   

18.
基于CUDA的并行粒子群优化算法的设计与实现   总被引:1,自引:0,他引:1  
针对处理大量数据和求解大规模复杂问题时粒子群优化(PSO)算法计算时间过长的问题, 进行了在显卡(GPU)上实现细粒度并行粒子群算法的研究。通过对传统PSO算法的分析, 结合目前被广泛使用的基于GPU的并行计算技术, 设计实现了一种并行PSO方法。本方法的执行基于统一计算架构(CUDA), 使用大量的GPU线程并行处理各个粒子的搜索过程来加速整个粒子群的收敛速度。程序充分使用CUDA自带的各种数学计算库, 从而保证了程序的稳定性和易写性。通过对多个基准优化测试函数的求解证明, 相对于基于CPU的串行计算方法, 在求解收敛性一致的前提下, 基于CUDA架构的并行PSO求解方法可以取得高达90倍的计算加速比。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号