首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 162 毫秒
1.
We propose a novel scheme of Rayleigh backscattering noise-eliminated, long-reach, single-fiber, full-duplex, centralized wavelength-division multiplexed passive optical network with differential quadrature phase-shift keying (DPSK) downstream and remodulated upstream using an optical carrier-suppressed subcarrier-modulation (OCS-SCM) technique and optical interleaver. The error-free transmissions of 10-Gb/s downstream and 2.5-Gb/s upstream signals are experimentally demonstrated over 115-km single-fiber bidirectional SMF-28 with less than 0.5 and 1.9 dB power penalties, respectively.   相似文献   

2.
Bidirectional four wave mixing (FWM) is investigated in a bulk semiconductor optical amplifier (SOA) for dispersion compensation and for the clear/drop functionality in optical time division multiplexed (OTDM) systems. Good performance for bidirectional midspan spectral inversion (MSSI) is theoretically predicted for bit rates of 10, 20, and 40 Gb/s and is shown to be in agreement with measurements performed at 10 and 20 Gb/s. Measurements of the clear/drop functionality using the bidirectional technique show excellent performance for a 4×10 Gb/s signal and is again in good agreement with simulations. The clear/drop functionality is also simulated for 4×20 Gb/s and 4×40 Gb/s signals  相似文献   

3.
We investigate a wavelength-division-multiplexing passive optical network (WDM-PON) with centralized lightwave and direct detection. The system is demonstrated for symmetric 10 Gbit/s differential phase-shift keying (DPSK) downstream signals and on-off keying (OOK) upstream signals, respectively. A wavelength reused scheme is employed to carry the upstream data by using a reflective semiconductor optical amplifier (RSOA) as an intensity modulator at the optical network unit (ONU). The constant-intensity property of the DPSK modulation format can keep high extinction ratio (ER) of downstream signal and reduce the crosstalk to the upstream signal. The bit error rate (BER) performance of our scheme shows that the proposed 10 Gbit/s symmetric WDM-PON can achieve error free transmission over 25-km-long fiber transmission with low power penalty.  相似文献   

4.
We have proposed and experimentally demonstrated a novel architecture for orthogonal frequency-division- multiplexing (OFDM) wavelength-division-multiplexing passive optical network with centralized lightwave. In this architecture, 16 quadrature amplitude modulation intensity-modulated OFDM signals at 10 Gb/s are utilized for downstream transmission. A wavelength-reuse scheme is employed to carry the upstream data to reduce the cost at optical network unit. By using one intensity modulator, the downstream signal is remodulated for upstream on–off keying (OOK) data at 2.5 Gb/s based on its return-to-zero shape waveform. We have also studied the fading effect caused by double-sideband (DSB) downstream signals. Measurement results show that 2.5-dB power penalty is caused by the fading effect. The fading effect can be removed when the DSB OFDM downstream signals are converted to single sideband (SSB) after vestigial filtering. The power penalty is negligible for both SSB OFDM downstream and the remodulated OOK upstream signals after over 25-km standard single-mode-fiber transmission.   相似文献   

5.
We propose and demonstrate an upstream transmission scheme using a semiconductor optical amplifier (SOA) for arrayed waveguide grating (AWG)-based dense wavelength-division-multiplexed (DWDM) millimeter-wave fiber-radio systems and show improved link performance. In our scheme, unused optical carriers from the cyclic AWG in the downlink (DL) are tapped for uplink (UL) transmission. An SOA in conjunction with the AWG simultaneously amplifies the DL RF subcarriers and UL optical carrier, thus improving carrier-to-sideband ratio in the DL while also yielding an improved power budget for the UL. Our experimental results show that the proposed scheme can be a practical solution for future bidirectional wavelength interleaved DWDM transmission systems  相似文献   

6.
A signal remodulation scheme of 10-Gb/s differential phase-shift keying(DPSK) downstream and 10-Gb/s on-off keying(OOK) upstream using a semiconductor optical amplifier(SOA) and a Mach-Zehnder intensity modulator(MZ-IM) at the optical networking unit(ONU) side for wavelength division multiplexed passive optical network(WDM PON) is proposed.Simulation results indicate that error-free operation can be achieved in a 20-km transmission,and the receiver sensitivity of return-to-zero differential phase-shift keying(RZ-DPSK) is higher than nonreturn-to-zero differential phase-shift keying(NRZ-DPSK) in the proposed scheme.  相似文献   

7.
A colorless wavelength division multiplexing passive optical network delivering up/downstream signals and video broadcast signal (VBS) simultaneously is presented in this paper. In this scheme, subcarrier modulation technique is adopted at the optical line terminal. Here un-modulated double-sideband subcarriers and optical carriers operating in different wavelength bands are used for downstream and video broadcast signal transmission, respectively. The use of differential-phase-shift-keying (DPSK) modulation for downstream transmission enables effective upstream transmission by direct re-modulation. The simulation results demonstrated with 2.5-Gb/s up/downstream signals and video broadcasting signal show this approach could work very well.  相似文献   

8.
We propose a novel wavelength-division-multiplexed passive optical network which supports simultaneous delivery of 10-Gb/s point-to-point downstream and upstream data as well as 10-Gb/s downstream multicast data. The multicast overlay control is achieved by a polarization-assisted scheme at the optical line terminal (OLT). A separate lightpath is provided for the downstream multicast differential phase-shift keying (DPSK) data without additional light sources. The upstream amplitude-shift keying signal at the optical network unit is superimposed onto the received multicast DPSK signal before being transmitted back to the OLT.   相似文献   

9.
We propose a novel optical carrier-reuse scheme for the wavelength-division-multiplexed passive optical network. The scheme is based on a single delay interferometer (DI) at the remote node and reflective semiconductor optical amplifiers (RSOAs) at optical network units as the colorless devices for upstream transmission. The downstream subcarrier signals are optically separated by the DI for baseband detection of the downstream data and the separated optical carriers are used for seeding the RSOAs. Eight-channel upstream and downstream transmission is demonstrated at 1.25 Gb/s using the proposed scheme. The impact of optical carrier-to-subcarrier ratio of downlink signal and seeding light power on performance is also investigated  相似文献   

10.
We propose and demonstrate a novel wavelength remodulation scheme using differential phase-shift keying (DPSK) modulation format in both downstream and upstream signals for ldquocolorlessrdquo dense wavelength-division-multiplexed (DWDM) passive optical networks (PONs). The scheme enables high extinction ratio in both downstream and upstream remodulated signals. Error-free operation was achieved in a 20-km-reach 10-Gb/s DWDM-PON without dispersion compensation. Timing misalignment tolerance between downstream and upstream remodulated signals and maximum launched optical power for the proposed scheme are studied. Comparison with other wavelength remodulation schemes for DWDM-PONs is also performed, showing the proposed scheme can be a potential candidate for next-generation wavelength reuse DWDM-PONs.  相似文献   

11.
光放大器是光通信的关键组成部分。对半导体光放大器的算法模型进行优化与测试,系统的分析了建模运放的增益和噪声指数。测试结果表明,半导体光放大器的最佳幅度调制条件是输入-5dBm的功率与选择100mA的偏置电流,最佳相位调制条件是输入-20dBm的功率与选择100mA的偏置电流。分析并搭建了通信速率为2.5 Gb/s的20km双向传输通信系统,对半导体光放大器和分布反馈激光器集成的光网络单元进行了上行链路和下行链路的双向与单向传输测试。在前向误码率要求为2.4×10-4时,双向传输的上行接收灵敏度达到 -22.4dBm,下行接收灵敏度达到 -31.4dBm;单向传输的上行下行接收灵敏度分别达到 -22.7dBm 和-31.6dBm。  相似文献   

12.
理论分析了一种基于垂直泵浦结构光半导体放大器(SOA)的偏振无关光正交频分复用(OOFDM)信号波长变换模型,实验证明了基于SOA-四波混频(FWM)的OOFDM信号波长变换的可行性,观测到OOFDM在SOA引入噪声而带来的信号劣化。实验成功实现了2.5Gbit/s光OFDM信号的波长变换,其误码率为1×10-3的接收机功率代价可以忽略,其极化敏感度小于3dB。  相似文献   

13.
调制格式对再调制WDM-PON系统性能的影响   总被引:3,自引:0,他引:3  
比较和分析了使用1.25Gb/s,2.5Gb/s and 5Gb/s的曼彻斯特编码和NRZ编码下行信号,1.25Gb/s NRZ编码上行信号的基于反射式半导体光放大器(RSOA)的波长重用波分复用无源光网络(WDM-PON)系统的性能.实验结果表明,相对于NRZ调制格式,曼彻斯特编码可获得更好的功率余量,尤其是在上下行信号速率非对称的网络中,曼彻斯特编码具有更加明显的优越性.  相似文献   

14.
Fast optical frequency shift keying or wavelength shift keying (WSK) modulation offers advantageous features for applications in long haul communications and in optical labeling for packet routing. This includes simple demodulation by optical filtering and constant amplitude envelope providing tolerance to fiber nonlinear effects during transmission. In this paper we report on the generation of WSK signals up to 35 Gb/s with reuse of the wavelength tones for polarization multiplexing two independent 40 Gb/s DPSK signals. Transmission over a 50 km fiber link of the resultant three channel signal is also reported.  相似文献   

15.
In this paper, we propose a novel self-surviving architecture for next-generation orthogonal frequency division multiplexing (OFDM) passive optical network (PON) supporting colorless optical network units. The proposed scheme can protect distribution and feeder fiber simultaneously. Two different frequency bands are used in this proposed system for paratactic OFDM-PON. The disrupt signals can be restored via the fiber links of the neighboring OFDM-PON without special protecting fibers. We analytically and experimentally study the receiver sensitivity to downstream 10 Gb/s OFDM signals and upstream 2.5 Gb/s NRZ signals. The proposed architecture is designed mainly for next-generation PON systems.  相似文献   

16.
In this paper,we describe the generation,detection,and performance of frequency-shift keying (FSK) for high-speed optical transmission and label switching.A non-return-to-zero (NRZ) FSK signal is generated by using two continuous-wave (CW) lasers,one Mach-Zehnder modulator (MZM),and one Mach-Zehnder delay interferometer (MZDI).An RZ-FSK signal is generated by cascading a dual-arm MZM,which is driven by a sinusoidal voltage at half the bit rate.Demodulation can be achieved on 1 bit rate through one MZDI or an array waveguide grating (AWG) demultiplexer with balanced detection.We perform numerical simulation on two types of frequency modulation schemes using MZM or PM,and we determine the effect of frequency tone spacing (FTS) on the generated FSK signal.In the proposed scheme,a novel frequency modulation format has transmission advantages compared with traditional modulation formats such as RZ and differential phase-shift keying (DPSK),under varying dispersion management.The performance of an RZ-FSK signal in a 4 × 40 Gb/s WDM transmission system is discussed.We experiment on transparent wavelength conversion based on four-wave mixing (FWM) in a semiconductor optical amplifier (SOA) and in a highly nonlinear dispersion shifted fiber (HNDSF) for a 40 Gb/s RZ-FSK signal.The feasibility of all-optical signal processing of a high-speed RZ-FSK signal is confirmed.We also determine the receiver power penalty for the RZ-FSK signal after a 100 km standard single-mode fiber (SMF) transmission link with matching dispersion compensating fiber (DCF),under the post-compensation management scheme.Because the frequency modulation format is orthogonal to intensity modulation and vector modulation (polarization shift keying),it can be used in the context of the combined modulation format to decrease the data rate or enhance the symbol rate.It can also be used in orthogonal label-switching as the modulation format for the payload or the label.As an example,we propose a simple orthogonal optical label switching technique based on 40 Gb/s FSK payload and 2.5 Gb/s intensity modulated (IM) label.  相似文献   

17.
《Optical Fiber Technology》2013,19(2):179-184
We propose and demonstrate combining differential phase-shift keying (DPSK) and duobinary transmission for the downstream in 40-Gb/s long-reach wavelength division multiplexed-passive optical networks (WDM-PONs) in order to provide robust transmission performance in the backhaul section and simple detection at the ONUs. DPSK is deployed in the trunk span as it provides stronger robustness to fiber nonlinearity. Duobinary is used in the access span where its higher chromatic dispersion tolerance relieves the need for dispersion compensation. All-optical multichannel modulation format conversion from DPSK to duobinary is realized in the local exchange in a single delay interferometer to reduce system cost. Single and multi-channel 80-km long-reach DPSK transmission and up to 5-km duobinary access transmission are experimentally demonstrated at 40 Gb/s. The proposed approach shows great potential for future high data rate optical access networks.  相似文献   

18.
Gain transients can severely hamper the upstream network performance in wavelength division multiplexed (WDM) access networks featuring erbium doped fiber amplifiers (EDFAs) or Raman amplification. We experimentally demonstrate for the first time using 10 Gb/s fiber transmission bit error rate measurements how a near-saturated semiconductor optical amplifier (SOA) can be used to control these gain transients. An SOA is shown to reduce the penalty of transients originating in an EDFA from 2.3 dB to 0.2 dB for 10 Gb/s transmission over standard single mode fiber using a 231–1 PRBS pattern. The results suggest that a single SOA integrated within a WDM receiver at the metro node could offer a convenient all-optical solution for upstream transient control in WDM access networks.  相似文献   

19.
We have investigated the wavelength conversion techniques for differential phase-shift keying (DPSK) modulation formats in 10 Gb/s transmission systems, compared with the non-return-to-zero (NRZ) modulation format. For the wavelength conversion of DPSK modulation formats, we employed the wavelength converters based on the four-wave mixing (FWM) in semiconductor optical amplifiers (SOAs) and the frequency comb generated by phase modulation. The power penalty at 10/sup -9/ bit error rate was used as a measure of the system performance degraded by the wavelength conversion. Our simulation results show that the DPSK modulation formats have a smaller power penalty than the NRZ modulation format for the wavelength conversion using the FWM effect in an SOA due to a much lower pattern effect. However, as the wavelength conversion uses the frequency comb generated by phase modulation, it has a similar power penalty compared with the NRZ modulation format. It is also shown that the DPSK modulation formats are possible to obtain the power penalty less than 0.4 dB for both wavelength conversion techniques.  相似文献   

20.
5 Gb/s direct optical differential-phase-shift-keying (DPSK) modulation of a 1530-nm distributed feedback (DFB) laser is demonstrated using injection current modulation with a bipolar signal format. Delay demodulation is performed using an interferometer with a delay time T equal to the duration of one bit. The input and differentially encoded nonreturn to zero (NRZ) signals are shown. The bipolar modulation current signal is basically the time derivative of the NRZ signal. There was no degradation of the optical DPSK signal due to thermal frequency modulation of the laser. The direct DPSK modulation technique avoids the insertion loss and systems complexity of external DPSK modulators  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号