首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Reactivities of several coals of different ranks have been examined in degrading extractions with aromatic solvents under apparently non-hydrogenative reaction conditions. Pyrene and A240 pitch liquefied the fusible coals in high yields and the slightly-fusible coals in moderate yields, indicating the importance of fusibility in such liquefaction processes. A240-LS pitch is a powerful solvent for slightly-fusible coals. Considerable amounts of pyridine- or THF-soluble fractions were produced especially with A240-LS pitch. A240 pitch is a better solvent than pyrene for some slightly-fusible coals. However, the extent of depolymerization of liquefied coal, pyridine- or THF-solubility, was definitely inferior. Yields of such fractions are higher for lower-rank coals. The mechanism of coal liquefaction under apparently non-hydrogenative conditions is discussed with emphasis on the stabilization of thermal fragments derived from the coal.  相似文献   

2.
Hydrogen-donor solvents such as hydrophenanthrene are the most effective aromatic solvents for the liquefaction of brown coal. The hydrogen-donating ability of the solvent is more important for brown coals than for bituminous coals, because the thermal decomposition and subsequent recombination of the structure of the brown coals occurs rapidly. Three-ring aromatic hydrocarbons are more effective solvents than two-ring aromatics, and polar compounds are less effective solvents with brown coals than with bituminous coals. The thermal treatment of brown coal, accompanied by carbon dioxide evolution at temperatures > 300°C, in the presence of hydrogen-donating solvent did not affect the subsequent liquefaction reaction. However, thermal treatment in the absence of solvent strongly suppressed the liquefaction reaction, suggesting that the carbonization reaction occurred after the decarboxylation reaction in the absence of hydrogen donor. To study the effect of various iron compounds, brown coal and its THF-soluble fraction were hydrogenated at 450°C in the presence of ferrocene or iron oxide. The conversion of coal and the yield of degradation products are increased by the addition of the iron compounds, particularly ferrocene, and the yield of carbonaceous materials is decreased.  相似文献   

3.
The copreheat-treatment of non-fusible and slightly fusible coals with A240 and hydrogenated A240 under high temperature-short contact-time conditions around 500 °C has been examined in an attempt to produce a formed coke with better anisotropic development. These conditions shortened the copreheat-treatment time and provided better anisotropic development in the resultant coke after carbonization. Effectiveness of short contact-time has been discussed in terms of the extent of depolymerization of coal molecules suitable for anisotropic development, this being related to coal liquefaction under similar conditions.  相似文献   

4.
A procedure for the preparation of solid formed coke of enough adhesion and anisotropic development for use in the blast furnace has been studied, using non-fusible and slightly fusible coals with petroleum cocarbonizing additives. The coke precursor was prepared through the copreheat-treatment of coal and a suitable additive in adequate quantity under stipulated conditions. The desired coke was produced by carbonization after forming with a press. The conditions for the copreheat-treatment have been carefully examined in terms of the temperature, time and heating devices. The behaviour of coals during copreheat-treatment and carbonization were discussed in terms of coal ranks, comparing this behaviour to the liquefaction reactivity and thermal stability of their liquefied product.  相似文献   

5.
Hengfu Shui  Zhicai Wang  Meixia Cao 《Fuel》2008,87(13-14):2908-2913
Effects of pre-swelling of coal on solvent extraction and liquefaction properties were studied with Shenhua coal. It was found that pre-swelling treatments of the coal in three solvents, i.e., toluene (TOL), N-methyl-2-pyrrolidinone (NMP) and tetralin (THN) increased its extraction yield and liquefaction conversion, and differed the liquefied product distributions. The pre-swollen coals after removing the swelling solvents showed increased conversion in liquefaction compared with that of the swollen coals in the presence of swelling solvents. It was also found that the yields of (oil + gas) in liquefaction of the pre-swollen coals with NMP and TOL dramatically decreased in the presence of swelling solvent. TG and FTIR analyses of the raw coal, the swollen coals and the liquefied products were carried out in order to investigate the mechanism governing the effects of pre-swelling treatment on coal extraction and liquefaction. The results showed that the swelling pre-treatment could disrupt some non-covalent interactions of the coal molecules, relax its network structure and loosened the coal structure. It would thus benefit diffusion of a hydrogen donor solvent into the coal structure during liquefaction, and also enhance the hydrogen donating ability of the hydrogen-rich species derived from the coal.  相似文献   

6.
The effect of Wyodak coal properties on liquefaction reactivity as measured by distillate yield and cyclohexane conversion has been investigated. Spot samples of four Wyodak subbituminous coals from the Anderson and Canyon coal seams in the Powder River Basin of NE Wyoming were liquefied in microautoclave and batch reactor experiments. Runs were made using two different Wyodak coal-derived solvents. Emphasis in this work was directed toward correlation of C4-700 K distillate yield and cyclohexane conversion as functions of measurable physical, chemical and petrographic properties of the feed coal. Reactivity rankings were found to be the same using either measure of coal reactivity. However, the data indicated that distillate yields were a function of both solvent quality and feed coal properties. For each solvent studied, selected coal properties, including carbon content, total and organic sulphur content, vitrinite content and total reactive maceral (vitrinite plus exinite) content, were found to give statistically significant correlations with distillate production and cyclohexane conversion. Pyritic and sulphate sulphur contents did not appear to enhance liquefaction yield or conversion at the reaction conditions studied. However, any catalytic effects due to pyrite or sulphate sulphur may have been masked by the use of two high quality liquefaction solvents.  相似文献   

7.
Liquefaction reactions in a tubing-bomb reactor have been carried out as a function of coal, coal sampling source, reaction time, atmosphere, temperature, coal pre-treatment, SRC post-treatment and process solvent. Pyridine as well as toluene conversions ranging from 70 to > 90 wt% involving both eastern bituminous and western subbituminous coals are obtained. 1,2,3,4-Tetrahydroquinoline (THQ) has been extensively used as a process solvent under optimized liquefaction conditions of 2:1 solvent: coal, 7.5 MPa H2, 691 K and 30 min reaction time. Comparisons of THQ with other model process solvents such as methylnaphthalene and tetralin are described. Liquefaction product yield for conversion of subbituminous coal is markedly decreased when surface water is removed from the coal by drying in vacuo at room temperature prior to liquefaction. The effect of mixing THQ with Wilsonville hydrogenated process solvent in the liquefaction of Wyodak and Indiana V coals is described.  相似文献   

8.
Coals of different ranks were acid-treated in aqueous methoxyethoxy acetic acid (MEAA), acetic acid (AA), and HCl. The acid-treated coals were extracted with polar N-methyl-2-pyrrolidinone (NMP) and nonpolar 1-methylnaphthalene (1MN) solvents at temperatures from 200 to 360 °C for 10-60 min. The thermal extraction yields with NMP for some acid-treated low-rank coals increased greatly; for example, the extraction yield for Wyodak coal (%C; 75.0%) increased from 58.4% for the raw coal to 82.9% for coal treated in 1.0 M MEAA. Conversely, the extraction yields changed minimally for all the acid-treated coals extracted in 1-MN. The type and concentration of acid affected the extraction yield when NMP was used as the extraction solvent. With increasing MEAA concentration from 0.01 to 0.1 M, the extraction yield for Wyodak coal increased from 66.3 to 81.4%, and subsequently did not change clearly with concentration. Similar changes in the extraction yield with acid concentration were also observed with AA and HCl. The de-ashing ratio for coals acid-treated in MEAA, AA, and HCl also increased greatly with concentration from 0.01 to 0.1 M, which corresponded to the change in the thermal extraction yield in NMP. For the acid-treated coals, high extraction yields were obtained at lower extraction temperatures and shorter extraction times than for the raw coal. The mechanisms for the acid treatment and thermal extraction are discussed.  相似文献   

9.
《Fuel》2002,81(11-12):1551-1557
The New Energy and Industrial Technology Development Organization (NEDO) has implemented the collaborative research work with China Coal Research Institute (CCRI) on the liquefaction of Chinese coals for about 20 years. A total of 53 runs in a 0.1 t/d bench scale coal liquefaction plant installed at the CCRI were made on 27 kinds of coal selected among coals existing throughout China. The bench plant was operated in a direct hydrogenation (DH) mode and NEDOL mode. In the DH mode, 25 MPa of reaction pressure was employed with decrystallized anthracene oil used as the solvent, while 17 MPa of reaction pressure was employed and hydrogenated solvent was used in the NEDOL mode. This study confirmed that the NEDOL mode, which uses comparatively mild in liquefaction conditions, can liquefy each coal with the high oil yield more efficiently, and is capable of liquefying about 60% of inertinite in high inertinite coals.  相似文献   

10.
Liquefaction of Yallourn brown coal in solvents at high temperature for short contact times and low pressures has been studied. Very high asphaltene yields are achieved with hydrogen-donating solvents (hydrogenated Ashland pitch A240, hydrogenated anthracene oil, and hydrogenated pyrene). For hydrogenated pyrene, yields of almost 90% were obtained during reaction at 450°C for 10 min or at 510°C for 1 min. The average molecular weight of the asphaltene found was 270, with 40 wt% being accounted for by three-and four-ring polynuclear hydrocarbons. The effect of liquefaction temperature, time, and solvents on the asphaltene yield have been examined to clarify the properties required for the solvent under the present conditions used. The behaviour of the asphaltene during pyrolysis and hydrotreatment has also been studied. Some mechanistic aspects of high-temperature, short contact time liquefaction are discussed with regard to the reactivities of the brown coal and the solvents.  相似文献   

11.
The modifying activities of hydrogenated pyrene (HP) and its oxidized derivatives were examined in co-carbonization with solvent refined coal, solvent treated coal, a fusible and a non-fusible coal. The present additives all showed a significant activity, with HP oxidized at 150°C exhibiting the highest activity. The activity of the additive is discussed from its structural indices and coke yield in relation to its dissolving and hydrogen donating abilities. The modifying susceptivility of the carbonizing substance is rated in the order described above, being correlated with its single carbonization properties, such as fusibility and potential for anisotropic development. A consecutive treatment of partial hydrogenation and oxidation is emphasized as a useful technique for producing active additive and an excellent coking substance from the pitch material.  相似文献   

12.
Yasuhiro Takemura  Koji Ouchi 《Fuel》1983,62(10):1133-1137
In a batch-autoclave, twenty coals were liquefied using a cobalt-molybdenum oxide catalyst with a mixture of CO and H20 at 400 °C with or without vehicle oil. Furthermore, lignite and peat were liquefied on tungsten oxide catalyst at 300 °C in the absence of CO. The reactivity of coal in this liquefaction is found to depend strongly on its rank. The vehicle oil significantly influences the extent of the water-gas shift reaction, especially when bituminous coals are liquefied, by dissolving such coals. Liquefaction of coal by this process is considered to take place via three routes: hydrogenolysis by the nascent hydrogen produced from the shift reaction; dissolution of coal into the vehicle oil which is an initial stage of hydrogenolysis; and a solvolytic reaction with H2O, such as hydrolysis.  相似文献   

13.
《Fuel Processing Technology》1997,50(2-3):235-247
Eleven low rank coals from North Bohemian mines were comprehensively characterized by using a number of analytical methods. Along with common proximate and ultimate analysis, spectroscopic techniques, porosity measurement, extractability and swelling in organic solvents were used. Although coals were of similar geological origin, some of their characteristics largely differed from one coal to another. Coals were coprocessed with petroleum vacuum residue at 440°C for 1 h and yields of reaction products and coal conversions were determined. Despite the differences in composition and properties, the coals provided similar conversions and yields of distillable reaction products. A small positive effect on coal conversion was found for ash content and microporosity of coals. However, a small negative effect was found for carbon content, optical reflectance and solvent extractability of coals.  相似文献   

14.
《Fuel》2002,81(11-12):1463-1469
In order to produce ashless coal (HyperCoal) in a high yield, extractions with several organic solvents—tetralin, 1-methylnaphthalene, dimethylnaphthalene and light cycle oil (LCO) at 200–380 °C were conducted for various ranks of coals, and subsequent solid/solution separation was done at room temperature. LCO was found to be a useful, cost-effective solvent, since it gave similar extraction yields to three other reagent solvents. The extraction yield for Illinois No. 6 coal gradually increased over 200 °C, and a significant increase in extraction yield was observed from 350 to 360 °C. We succeeded in producing ashless coal with less than 0.1% in ash content for seven of nine coals used in this study.  相似文献   

15.
A comparison of anthracene and phenanthrene as solvents was undertaken by liquefying either Wyodak or Kentucky 9/14 coal in the presence of hydrogen or nitrogen. Phenanthrene was found to be a better physical solvent than anthracene for liquefying both coals. Anthracene and its derivatives are better hydrogen-shuttling solvents than phenanthrene and its derivatives. Hydrogenation of anthracene to tetrahydro-anthracene was observed with both coals. Dihydroanthracene is a better hydrogen-shuttling solvent than dihydrophenanthrane in the liquefaction of Kentucky 9/14 coal. Anthracene is a better solvent than phenanthrene in the presence of 1-methylnaphthalene in liquefying both Wyodak coal under hydrogen and Kentucky 9/14 coal under nitrogen. The minerals in Kentucky 9/14 coal appear to be better hydrogenation catalysts than those in Wyodak coal. Labile hydrogen from coal appears to escape readily before reacting with hydrogen-shuttling solvents under the atmospheric environment.  相似文献   

16.
Optimum distillate yields from US lignites can be as high on a dry, ash-free basis as those obtained from bituminous coals, but only if the vacuum bottoms are recycled. Lignites are more readily liquefied if the reducing gas contains some carbon monoxide and water, which together with bottoms recycle has proven to yield the highest conversions and the best bench-unit operability. The recycle solvent in the reported tests consisted of unseparated product slurry, including coal mineral constituents. Variability in coal minerals among nine widely representative US low-rank coals did not appear to correlate with liquefaction behaviour. Addition of iron pyrite did, however, improve yields and product quality, as measured by hydrogen-to-carbon ratio. Future improvements in liquefaction processes for lignite must maintain high liquid yields at reduced levels of temperature, pressure, and reaction time whilst using less reductant, preferably in the form of synthesis gas (CO + H2) and water instead of the more expensive pure hydrogen. Understanding the process chemistry of carbon monoxide and sulphur (including H2S) during lignite liquefaction is a key factor in accomplishing these improvements. This Paper reviews proposed mechanisms for such reactions from the viewpoint of their relative importance in affecting process improvements. The alkali formate mechanism first proposed to explain the reduction by CO does not adequately explain its role in lignite liquefaction. Other possible mechanisms include an isoformate intermediate, a formic acid intermediate, a carbon monoxide radical anion, direct reaction with lignite, and the activation of CO by alkali and alkaline earth cations and by hydrogen sulphide. Hydrogen sulphide reacts with model compounds which represent key bond types in low-rank coal in the following ways: (1) hydrocracking; (2) hydrogen donor; (3) insertion reactions in aromatic rings; (4) hydrogen abstraction, with elemental sulphur as a reaction intermediate; and (5) catalysis of the water-gas shift reaction. It appears that all of these reaction pathways may be operative when catalytic amounts of H2S are added during liquefaction of lignite. In bench recycle tests, the addition of H2S as a homogeneous catalyst reduced reductant consumption as much as three-fold whilst maintaining high yield levels when the reaction temperature was reduced by 60°C. Attainment of the high distillate yield at 400°C was accompanied by a marked decrease in the production of hydrocarbon gases, which normally is a major cause of unproductive hydrogen consumption and solvent degradation via hydrocracking. Processing with synthesis gas and inherent coal moisture using bottoms recycle and H2S as a catalyst appears to be the most promising alternative combination of conditions for producing liquids from lignite at reduced cost.  相似文献   

17.
《Fuel》2006,85(12-13):1798-1802
The extraction of four Chinese different rank bituminous coals with the carbon disulfide/N-2-pyrrolidinone (CS2/NMP) mixed solvent (1:1 by volume) was carried out in room temperature. It was found that one of middle bituminous raw coal of the four coals gave more than 74% (daf) extraction yield, suggesting an associative structural model for the coal. The four coals were hydrothermal treated under different conditions, and it was found that the extraction yields of the treated coals obviously increased. This will have great significance for coal liquefaction. FTIR measurements show the removal of minerals after the hydrothermal treatment of coals suggesting the dissociation of the coal aggregation structure due to ionic interactions and/or hydrogen bonds broken because of the removal of oxygen and hydroxyl oxygen proceeded through ionic pathways, resulting in the extraction yields of the treated coals increase. However, breaking of π-cation interactions by hydrothermal treatment may be one of possible mechanisms for the enhancement of extraction yield of higher rank of treated coal. The mechanism of hydrothermal treatment of coal was discussed in the paper.  相似文献   

18.
Yoshinobu Otake  Eric M. Suuberg 《Fuel》1989,68(12):1609-1612
A simple technique has been developed for measuring the kinetics of solvent diffusion in coals at various temperatures. The technique is based on a well-known method for measuring the volumetric swelling of coals by solvents. Several coals have been examined in both pyridine and tetrahydrofuran, at temperatures between 298 and 332 K. The diffusion follows the well-established case II rate law at ambient temperatures, implying that the processes are controlled by relaxation in the coal network structure. As temperatures are increased, the process becomes more Fickian in nature. The activation energies for the diffusion-relaxation processes are in the range 31 to 82 kJ mol−1.  相似文献   

19.
This study was undertaken to find ways to solubilize subbituminous coal in high yield at short contact times. Short contact-time hydroliquefaction runs were carried out in a continuous unit using Belle Ayr subbituminous coal with a solvent rich in hydrogen-donor molecules derived from the Lummus ITSL process, and also with solvents lower in donor concentration derived from the SRC processes. Catalysis by pyrite, molybdenum and supported cobalt-molybdenum was also studied. It was found that pyrite and other hydrogenation catalysts enhanced solubilization and also increased production of distillate oil. Solvent quality seemed to have no effect on the solubilization of Belle Ayr coal. The availability of H2S also appeared to have no effect. Provided that pyrite was present, reaction could be carried out at severities high enough to give insoluble organic matter yields equivalent to those obtained with bituminous coals (5–10 wt% daf coal). At equivalent levels of solubilization, however, hydrocarbon gas and distillate yields were invariably higher for the subbituminous coal. Implications for two-stage processing of Belle Ayr coal are discussed.  相似文献   

20.
《Fuel》2007,86(10-11):1396-1401
Three cokemaking bituminous coals were extracted by the CS2/NMP mixed solvents with different content of NMP, and the effect of the amount and the component of coal soluble constituents on the caking property of the extracted residues of coals were investigated in this study. The CS2/NMP mixed solvent (1:1 by volume) was found to give the maximal extraction yields for the three coals, and the fat coal gave the highest extraction yield of 78.6% (daf) corresponding to its highest caking index of 101. It was found that for coking coal, when the extraction yield got to the maximum of 25.3% in the 1:1 by volume of CS2/NMP mixed solvent, the residue extracted still had caking property with the caking index of 19. This means parts of the caking constituents of coal are un-extractible because of covalent bonding or strong associative cross-links. The soluble components extracted by the CS2/NMP mixed solvent and their effects on the caking indexes of the residues at a similar extraction yield quite differed depending on the NMP content in the mixed solvent. The coal solubles extracted by the CS2/NMP mixed solvent with NMP less than 50% contained less light constituents with less of oxygen groups. This may lead to the decrease in the caking indexes for the residues obtained at the similar extraction yields compared to those of the CS2/NMP mixed solvent with NMP more than 50%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号