首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
眼电信号是人机交互系统中的一种重要的信息源,该文提出了一种眼电信号特征提取与分类算法。首先研究小波包变换,提出以小波包分解系数作为眼电信号特征,通过支持向量机进行分类识别。在实验室环境下,采用该方法对6名眼部功能正常测试者的样本数据进行分类,平均识别率达到96.83%,具有很高的实用价值。  相似文献   

2.
提出了一种基于小波变换的肝脏CT图像疾病的分类方法:首先提取小波和灰度共生矩阵纹理特征,其次结合马氏距离的可分性判据和遗传算法进行特征选择及优化,最后利用支持向量机将肝脏CT图像进行分类.讨论了2种小波以及特征提取方式对分类结果的影响,并通过软件仿真实现算法.实验表明:小波变换可对肝脏CT图像进行有效的分类.  相似文献   

3.
基于小波变换的支持向量机短期负荷预测   总被引:3,自引:0,他引:3  
提出了一种基于小波分解和支持向量机的短期负荷预测方法.首先利用小波变换把负荷序列分解成不同频段的子序列,对高频序列利用软阀值消噪法去除负荷噪声;对降噪后的负荷序列利用不同的小波进行分解.然后用相匹配的支持向量机模型预测各子序列.仿真结果表明db4小波的预测精度最高,平均绝对预测误差为1.6692%.所得结果同直接用支持向量机预测结果进行比较表明,该方法是有效的。  相似文献   

4.
基于小波变换的支持向量机短期负荷预测   总被引:3,自引:2,他引:3  
提出了一种基于小波分解和支持向量机的短期负荷预测方法.首先利用小波变换把负荷序列分解成不同频段的子序列,对高频序列利用软阀值消噪法去除负荷噪声;对降噪后的负荷序列利用不同的小波进行分解.然后用相匹配的支持向量机模型预测各子序列.仿真结果表明db4小波的预测精度最高,平均绝对预测误差为1.6692%.所得结果同直接用支持向量机预测结果进行比较表明,该方法是有效的.  相似文献   

5.
基于小波变换压缩和支持向量机组的储粮害虫图像识别   总被引:9,自引:0,他引:9  
使用小波变换对储粮害虫的高维图像矢量进行压缩,利用图像的高频部分对应于图像的边缘和轮廓,很好地压缩和表征了害虫图像的特征.提出了一种基于支持向量机(SVM)组的淘汰法.这种方法考虑到了各判别函数的VC置信范围的差异,同时利用判别函数间的冗余来降低识别误差.100幅害虫图像的识别结果表明,基于SVM的识别方法在识别效果、识别时间等方面都有显著的优越性.  相似文献   

6.
SVM和DT-CWT的纹理图像分类方法研究   总被引:1,自引:0,他引:1  
提出了一种将支持向量机(SVM)和二元树复小波变换(DT-CWT)相结合的纹理图像分类方法.通过DT-CWT对纹理图像进行4层分解,提取各子频带小波系数模的均值和标准方差组成特征向量,利用SVM作为分类器实现纹理图像分类.从Brodatz图像库中随机选取了30幅纹理图像进行了分类试验,结果表明:该方法具有较高的分类精度,尤其在有限训练样本的情况下分类正确率明显优于其它的分类算法,体现了该方法的有效性和良好的泛化能力.  相似文献   

7.
提出了一种基于小波变换和自适应加权最小二乘支持向量机(AWLS-SVM)的电力系统短期负荷预测方法。针对负荷变化具有拟周期性和随机性的特点,本方法先将负荷值利用小波变换分解为几个低频段的拟周期量和一个高频段随机量,然后根据各分量特点应用AWLS-SVM模型进行预测,最后小波重构各分量获得预测结果。实例预测结果表明该方法具有较高的预测精度。  相似文献   

8.
基于心电信号的身份识别技术是生物身份识别领域研究的热点问题.该文利用小波变换将经过预处理之后的心电信号进行多尺度分解,组成一个初始特征矩阵;随后对该矩阵进行奇异值分解,分解后的奇异值包含了心电信号的重要信息,将其作为特征参数并最终采用支持向量机对心电信号进行匹配识别.通过对26个正常测试者的心电信号进行识别,识别率可达97.80%.  相似文献   

9.
为了准确地识别通信信号的调制方式,运用小波变换与支持向量机(SVM)对调制信号类型进行识别。采用小波分解重构方法对常用3种模拟信号和6种数字信号提取特征值,将提取的小波特征参数送到 SVM判决器,对信号调制类别进行训练与测试,得到平均识别率。实验结果表明,在信噪比不低于5 dB时,识别率达到了100%,具有良好的分类性能和抗噪能力。  相似文献   

10.
提出了一种基于SVM(支持向量机)人形识别的算法,通过对静态图像小波变换提取目标的局部形状突变特征,并结合动态帧的步态特征,然后利用支持向量机对小样本进行学习与识别.通过实验验证,该算法具有实时性好、识别率高、可靠性高、适用范围广等特点,以达到实现监控自动化和智能化的目标.  相似文献   

11.
为提高支持向量机(support vector machine,SVM)暴雨/冰雹分类准确率,研究了暴雨/冰雹样本到分类超平面的距离、样本邻域以及训练样本的过程信息对SVM分类可信度的影响,提出了采用距离系数、邻域系数和过程系数综合确定SVM分类可信度的方法,设计了基于SVM分类可信度的暴雨/冰雹分类模型,对暴雨和冰雹进行区分.结果表明:采用距离系数、邻域系数和过程系数可有效确定SVM分类可信度,基于SVM分类可信度的暴雨/冰雹分类模型有利于提高冰雹识别的击中率并降低其误报率.  相似文献   

12.
基于小波提取特征的SVM目标识别   总被引:3,自引:0,他引:3  
基于小波变换提出了一种特征提取及特征选择的方法.通过对小波系数绝对值化,减小了特征的分布范围;对小波进行自适应的过滤提取了目标的主要特征,增加了特征的聚类程度.本文通过SVM分类器对该方法进行验证并与其他方法比较.实验证明该方法有效的提高了目标的识别率,降低了误识别率.  相似文献   

13.
提出了一种基于支撑矢量机和中心距离比值的自动视频分类方法。它通过提取视频镜头中的颜色和运动特征,利用核支撑矢量机将视频的低级别特征映转到其高层的语义特征上,并在进行支撑矢量机训练算法之前使用了中心距离比值法进行支撑矢量的预选取,实现了语义内容上的自动视频分类。仿真结果表明,该算法能对视频进行比较准确的分类。  相似文献   

14.
基于SVM的青年女子体型分类研究   总被引:2,自引:0,他引:2  
采用美国[TC]2公司的三维人体测量仪测得的江浙青年女性的人体数据,然后根据身体4个部位的形态特征,将人体数据细分为各种女性人体体型.在分类过程中,通过引入支持向量机(SVM)方法,提出了基于SVM的青年女子体型分类模型.结果表明,SVM方法的分类时间短,分类精度高,是一种有效的识别分类方法.  相似文献   

15.
首先讨论主成分分析和支持向量机的基本思想和实现过程,由于主成分分析PCA方法具备降维的功能,而支持向量机SVM方法又具有高分类准确率的优点,尝试将两者结合起来进行模式分类,最终经过实验验证获得成功.采用UCI数据库中的wine数据库分别对PCA、SVM、主成分和支持向量机结合的模式分类这三种方法进行实验仿真和比较,并取...  相似文献   

16.
针对气阀信号信噪比低、特征提取困难及故障样本较少、难以建立可靠的故障识别模型的问题,提出基于小波包特征熵支持向量机的气阀故障诊断方法。首先选择容错性较强的信息熵作为特征参数,通过对信号小波包分解,提取故障敏感频带的小波包特征熵作为输入向量,采用仅有的故障训练样本构建SVM分类器,建立气阀故障诊断模型。试验表明,该方法对小样本情形下气阀故障的非线性模式分类问题体现了良好的适应性,且具有特征提取工作量小的特点。  相似文献   

17.
基于支持向量机和决策树的多分类方法存在错误累积问题,累积的错误往往使分类准确率下降,分类效果变差.在仔细分析了其产生错误累积原因的基础上,提出了基于哈夫曼树的支持向量机多分类方法.该方法首先将一个多分类问题分解为多个二分类问题,针对每个二分类问题使用支持向量机二分类方法解决;然后根据相异度来决策分类的优先顺序,构建基于哈夫曼树的支持向量机多分类模型;最后使用勒卡斯开源数据集进行验证,并将它与传统的支持向量机多分类方法进行实验比较.实验结果表明,新的方法在分类速度和分类精度上较传统的支持向量机多分类方法优越.  相似文献   

18.
文本情感极性分类是文本情感分析首先要解决的关键问题。在分析影响文本情感分类的各类因素的基础上,首先构建了情感词典,并进行情感特征选取以及情感特征加权,然后使用SVM分类的方法对文本进行情感识别及分类,最后在语料数据集的基础上,在单机平台上和Spark分布式计算平台上执行分类模型,对比分析其分类精度和时间代价。实验结果验证了本文构建的情感极性分类模型在单机和分布式云平台上中的有效性。  相似文献   

19.
高速公路事件检测是交通信息工程及控制学科中的一项重要研究课题,以高速公路交通流的特点为研究对象,提出了一种基于支持向量机(SVM)的高速公路事件检测算法.根据支持向量机的基本原理,分别设计了基于线性不可分SVM、齐次多项式核函数、高斯径向基核函数、双曲线正切核函数等不同核函数的事件检测算法.仿真结果表明:针对不同的交通流状况,选择合适的SVM模型和核函数,得到的检测结果与经典的加利福尼亚算法相比,检测效率高,性能指标好,具有较高的实际应用价值.  相似文献   

20.
为了判断一个给定的DNA序列片段是基因序列还是间区序列,基于语言学方法提取了DNA序列特征,通过支持向量机(SVM)训练方法,实现了对人类22号染色体的DNA序列中的基因和基因间区序列的分类.在不依赖于任何生物领域知识的前提下,该方法能得到85%以上的分类精度.相对于SVM分类方法,虽然二元Logistic回归(BLR)方法也能达到较高的分类精度,但在训练时间上SVM方法远优于BLR方法.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号