首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 48 毫秒
1.
The effect of refrigerated storage temperature was studied at 2, 5 and 8°C on the viability of probiotics in ABY ( Lactobacillus acidophilus, Bifidobacterium lactis BB-12 and yogurt bacteria. Bulgaricus , i.e. Streptococcus thermophilus and Lactobacillus delbrueckii ssp. Bulgaricus ) probiotic yogurt. The study was carried out during a 20-day refrigerated storage period to identify the best storage temperature(s). Also, the viability change of the probiotic micro-organisms was analysed at 5-day intervals throughout the refrigerated storage period. After 20 days, storage at 2°C resulted in the highest viability of L. acidophilus , whereas for Bifidobacterium lactis the highest viability was obtained when yogurt was stored at 8°C.  相似文献   

2.
The viability of Lactobacillus acidophilus and Bifidobacterium lactis in fermented milks A, B and AB, containing respectively these strains separately and mixed, was studied over 21 days of storage at 5°C. Samples were analysed for titratable acidity and viable cell counts of probiotics. Milks A and AB showed post-acidification mainly due to the β-galactosidase activity of L. acidophilus . Generally, the viability of the probiotics decreased during storage, whereas, in some cases, the proteoletic activity of L. acidophilus resulted in a higher survival rate of the probiotics even with the adverse effects of low temperature and organic acids.  相似文献   

3.
ABSTRACT:  This study was conducted to examine the growth, proteolytic profiles as well as angiotensin-I converting enzyme (ACE) and α-glucosidase (α-glu) inhibitory potentials of selected strains of lactic acid bacteria (LAB). Two strains each of yogurt bacteria ( Streptococcus thermophilus —1275 and 285, and Lactobacillus delbrueckii ssp. bulgaricus —1092 and 1368), and probiotics ( L. acidophilus —4461 and 33200, and L. casei —2607 and 15286, and 1 strain of Bifidobacterium longum 5022), were cultivated in reconstituted skim milk (RSM) at 37 °C and their proteolytic profiles and ACE as well as α-glu inhibitory activities were determined. Among all the strains of lactic acid bacteria studied, yogurt bacteria grew very well, with the exception of L. delbrueckii ssp. bulgaricus 1368 which showed a slower growth during the initial 3 h of incubation. The growth pattern corresponded well with the decrease in pH for the organisms. All the organisms showed an increase in proteolysis with time. The variations in proteolytic capabilities translated into corresponding variations in ACE inhibitory potential of these organisms. Bifidobacterium longum 5022 showed the highest ACE inhibitory potential followed by L. delbrueckii ssp. bulgaricus 1368, L. casei 15286, S. thermophilus 1275, and L. acidophilus 4461. Organisms with high intracellular enzymatic activities grew well. Also, aminopeptidases of strains of L. acidophilus 4461 and S. thermophilus 1275 that could better utilize proline containing substrates showed enhanced ACE inhibitory potential. Lactic acid bacteria possessed the ability to inhibit α-glu activity, which endowed them an antidiabetic property as well.  相似文献   

4.
Five yogurt batches were prepared with banana puree and sugar combinations and ABT-2 ( Streptococcus salivarius ssp. thermophilus, Lactobaccilus acidophilus and Bifidobacterium spp.) as starter culture. The addition of fruit influenced ( P <  0.05) the syneresis, titratable acidity and pH, whereas the viscosity value, and S. salivarius ssp. thermophilus, L. acidophilus and Bifidobacterium spp. counts were found to be insignificant. Storage time significantly ( P <  0.05) affected the syneresis, titratable acidity, pH value, and S. salivarius ssp. thermophilus counts, while the viscosity value and L. acidophilus and Bifidobacterium spp. counts were not affected. The sensory evaluations showed that the sample B was most preferred by panellists.  相似文献   

5.
豆酸乳是将大豆磨浆后与牛乳混合经乳酸菌发酵而赋予特殊风味的产品,但尚未有仅用嗜酸乳杆菌和两歧双歧杆菌2株菌来发酵益生菌豆酸乳的报道。对碳源、生长促进因子、稳定剂和温度等发酵条件进行优化,实验结果表明:在豆水比为1:8、牛乳含量为30%的豆浆牛乳混合物中添加4.0%的蔗糖、0.3%的葡萄糖、0.6%的低聚果糖、0.8%的BY-H-260,在无菌条件下添加0.005%的嗜酸乳杆菌菌粉和0.015%的两歧双歧杆菌菌粉,在42℃条件下发酵5~5.5 h,酸度可达70~75°T(pH为4.0左右),活菌数可达108cfu/mL级,组织状态良好。  相似文献   

6.
Probiotic bacteria: selective enumeration and survival in dairy foods   总被引:43,自引:0,他引:43  
A number of health benefits have been claimed for probiotic bacteria such as Lactobacillus acidophilus, Bifidobacterium spp., and Lactobacillus casei. Because of the potential health benefits, these organisms are increasingly incorporated into dairy foods. However, studies have shown low viability of probiotics in market preparations. In order to assess viability of probiotic bacteria, it is important to have a working method for selective enumeration of these probiotic bacteria. Viability of probiotic bacteria is important in order to provide health benefits. Viability of probiotic bacteria can be improved by appropriate selection of acid and bile resistant strains, use of oxygen impermeable containers, two-step fermentation, micro-encapsulation, stress adaptation, incorporation of micronutrients such as peptides and amino acids and by sonication of yogurt bacteria. This review will cover selective enumeration and survival of probiotic bacteria in dairy foods.  相似文献   

7.
ABSTRACT: Microorganisms possess endogenous enzymes, however the stability of these enzymes during storage in soymilk has not been studied. β-glucosidase is an important enzyme that could be used in the bioconversion of the predominant soy isoflavone glucosides to their bioactive aglycone forms. Fifteen probiotic microorganisms including bifidobacterium, Lactobacillus acidophilus , and Lactobacillus casei were screened for β-glucosidase activity using p-nitrophenyl-β-d-glucopyranoside as a substrate. Six strains were selected on the basis of β-glucosidase activity produced during fermentation of soymilk. The stability of the enzyme activity was assessed during incubation for up to 48 h and storage for 8 wk at frozen (-80°C), refrigerated (4°C), room (24.8°C), and incubation (37°C) temperatures. L. casei strains showed the highest β-glucosidase activity after 24 h of incubation followed by L. acidophilus strains, whereas bifidobacterium strains showedleast activity. However, p-glucosidase from Bifidobacterium animalis BB12 showed the best stability during the 48 h fermentation. Lower storage temperatures (-80°C and 4°C) showed significantly higher ( P < 0.05) β-glucosidase activity and better stability than that at higher temperatures (24.8°C and 37°C). The stability of β-glucosidase from these microorganisms should be considered for enzymic biotransformation during storage of isoflavone β-glucosides to bioactive isoflavone aglycone forms with potential health benefits.  相似文献   

8.
Bacillus sporothermodurans produces highly resistant endospores that can survive ultra-high-temperature treatment in milk. The induction of endospore germination before a heat treatment could be an efficient method to inactivate these bacteria and ensure milk sterility. In this work, the rate of spore germination of B. sporothermodurans LTIS27 was measured in distilled water after high-pressure treatments with varying pressure (50–600 MPa), treatment temperature (20–50 °C), pressure-holding time (5–30 min) and post-pressurization incubation time (30–120 min) at 37 °C or 4 °C. The results showed that pressure-induced germination was maximal (62%) after a treatment at 200 MPa and 20 °C and increased with pressure-holding time and post-pressurization incubation time. Treatment temperature had no significant effect on germination. A central composite experimental design with three factors (pressure, pressure-holding time, and post-pressurization incubation time) using response surface methodology was used to optimize the germination rate in distilled water and in skim milk. No factor interaction was observed. Germination was induced at lower pressure and was faster in milk than in distilled water, but complete germination was not reached. The optimum germination obtained with experimental data was 5.0 log cfu/mL in distilled water and 5.2 log cfu/mL in milk from 5.7 log cfu/mL of spores initially present in the suspension. This study shows the potential of using high hydrostatic pressure to induce the germination of B. sporothermodurans spores in milk before a heat treatment.  相似文献   

9.
使用不同益生菌组合制备黑枣酸奶,并探究不同益生菌组合对发酵和质构特性的影响。结果表明,不同益生菌组合会显著影响黑枣酸奶的理化指标和质构特性(P<0.05);相比传统酸奶发酵剂,强化植物乳杆菌、嗜酸乳杆菌和乳双歧杆菌(1∶1∶1)发酵可显著提高黑枣酸奶的可滴定酸度(46.48%)、持水力(4.75%)、可溶性固形物含量(3.85%)和胞外多糖含量(12.63%)。此外,益生菌强化发酵可使黑枣酸奶中乳酸菌活菌数达到9.63 lg CFU/mL,且有效改善黑枣酸奶的质构特性,其硬度值、弹性、内聚性和回复性分别为151.24 g、1.04 mm、0.96 g·s和0.28。  相似文献   

10.
通过研究分析功能性酸乳中双歧杆菌和各种乳酸菌在BBL平板培养基上的菌落特征及菌体形态,提出了一种可同时准确对每种益生菌单独计数的新方法,从而可直观地观察到各种益生菌的生长活度,免除了传统方法计数不同有益菌数要用不同培养基的繁琐,为生产和检测提供了依据;还对功能性酸乳的混合发酵生产工艺进行了研究,确定了最佳的菌种比例,按嗜热链球菌3%、保加利亚乳杆菌2%、嗜酸乳杆菌4%、双歧杆菌10%接种,39℃发酵11~13h,酸乳产品既保持了普通酸乳的良好口感和风味,又保证了双歧杆菌和乳酸菌活菌数在贮存期内均大于108cfu/mL,增强了酸乳的保健功能。  相似文献   

11.
The effect of milk processing on rheological and textural properties of probiotic low‐fat yogurt (fermented by two different starter cultures) was studied. Skim milk fortified with skim milk powder was subjected to three treatments: (1) thermal treatment at 85C for 30 min; (2) high hydrostatic pressure (HHP) at 676 MPa for 5 min; and (3) combined treatments of HHP (676 MPa for 5 min) and heat (85C for 30 min). The processed milk was fermented using two different starter cultures containing Streptococcus thermophilus, Lactobacillus delbrueckii ssp. bulgaricus, Lactobacillus acidophilus and Bifidobacterium longum at inoculation rates of 0.1 and 0.2%. Rheological parameters were determined and a texture profile analysis was carried out. Yogurts presented different rheological behaviors according to the treatment used, which could be attributed to structural phenomena. The combined HHP and heat treatment of milks resulted in yogurt gels with higher consistency index values than gels obtained from thermally treated milk. The type of starter culture and inoculation rate, providing different fermentation pathways, also affected the consistency index and textural properties significantly. The combined HHP and heat treatment of milks before fermentation, and an inoculation rate of 0.1% (for both cultures), led to desirable rheological and textural properties in yogurt, which presented a creamy and thick consistency that does not require the addition of stabilizers.  相似文献   

12.
ABSTRACT: :
Soymilk (SM), a potential culture medium for applying conductimetric techniques to evaluate the behavior of probiotic lactobacilli and bifidobacteria was examined. Media LAPTg, LM, and SM was standardized for the growth of Lactobacillus fermentum and Bifidobacterium longum. A dilution of 1/100 for L. fermentum and 1/1 for B. longum were considered optimal to obtain a detection time (DT) between 5 and 10 min. The relationship between the initial number of cells and the DT was linear throughout the incubation period considered (40 h). The effect of temperature (30, 37, and 42 °C) on the metabolic activity of the cells was also determined after 40 h of fermentation. The higher metabolic changes were observed at 42 °C with conductance values from 600 to 800 μS and DT of 5-7 min. Results obtained were confirmed by viable counts.  相似文献   

13.
The objectives of this study were to microencapsulate both probiotics and culture filtrates by spray drying to maintain enzyme activity and probiotic viability during storage. Thus, probiotics and culture filtrates from lao-chao were microencapsulated by spray drying with various outlet air temperatures, and the milk-clotting activity, survival of probiotics and physical properties of the microcapsules were determined. The end purpose was to create easy-to-use probiotic Kou Woan Loa cultures. In the near future, manufacturing probiotic Kou Woan Loa could be carried out by simply mixing milk with 5% microcapsules and waiting for 1 h for coagulation, which would be time saving and convenient. The present study has shown that microencapsulation of Lactobacillus acidophilus BCRC 14079, Bifidobacterium longum BCRC 14605 and culture filtrates from lao-chao by spray drying could provide a good protection for both milk-clotting enzymes and probiotics. The average of microcapsules size and density was 10 µm and 1.68 g/cm3, respectively. An increase in the microencapsulation efficiency of microcapsules and lower water activity was found when the outlet air temperature was raised. However, the survival of L. acidophilus and B. longum was reduced as the outlet air temperature increased. The numbers of probiotics were maintained above the recommended therapeutic minimum (107 cfu/g) throughout storage.  相似文献   

14.
ABSTRACT:  Six fermented acerola ice creams were produced, containing different starter cultures ( Bifidobacterium longum , Bi.lactis , and traditional yogurt starter culture— Streptococcus thermophilus and Lactobacillus delbrueckii spp. bulgaricus ) and final pH (5 and 4.5). The ice creams were evaluated for probiotic culture viability, vitamin C stability, and sensory acceptance. Mix fermentations were stopped when pH 5.0 and 5.5 were attained. However, after the addition of acerola pulp the determined pH were 4.5 and 5, respectively. Mixes were frozen and stored for 15 wk at −18 °C. The viable counts for probiotic cultures remained above the recommended minimum limit of 106 cfu/g during 15 wk storage even in products with pH 4.5. Vitamin C concentration remained around 140 mg/100 g of product. The attributes of aroma, taste, texture, and overall acceptance obtained scores in the range of 5.15 to 7.22. The fermented acerola ice cream was a suitable food for the delivery of vitamin C and Bifidobacterium strains with excellent viability and acceptable sensory characteristics.  相似文献   

15.
ABSTRACT:  The objective of this study was to enhance calcium solubility and bioavailability from calcium-fortified soymilk by fermentation with 7 strains of Lactobacillus , namely, L. acidophilus ATCC 4962, ATCC33200, ATCC 4356 , ATCC 4461 , L. casei ASCC 290, L. plantarum ASCC 276, and L. fermentum VRI-003. The parameters that were used are viability, pH, calcium solubility, organic acid, and biologically active isoflavone aglycone content. Calcium-fortified soymilk made from soy protein isolate was inoculated with these probiotic strains, incubated for 24 h at 37 °C, then stored for 14 d at 4 °C. Soluble calcium was measured using atomic absorption spectrophotometry (AA). Organic acids and bioactive isoflavone aglycones, including diadzein, genistein, and glycetein, were measured using HPLC. Viability of the strains in the fermented calcium-fortified soymilk was > 8.5 log10 CFU/g after 24 h fermentation and this was maintained for 14-d storage at 4 °C. After 24 h, there was a significant increase ( P < 0.05) in soluble calcium. L. acidophilus ATCC 4962 and L. casei ASCC 290 demonstrated the highest increase with 89.3% and 87.0% soluble calcium after 24 h, respectively. The increase in calcium solubility observed was related to lowered pH associated with production of lactic and acetic acids. Fermentation significantly increased ( P < 0.05) the level of conversion of isoflavones into biologically active aglycones, including diadzein, genistein, and glycetein. Our results show that fermenting calcium-fortified soymilk with the selected probiotics can potentially enhance the calcium bioavailability of calcium-fortified soymilk due to increased calcium solubility and bioactive isoflavone aglycone enrichment.  相似文献   

16.
This study investigated the viability of probiotic ( Lactobacillus acidophilus LA5, Lactobacillus rhamnosus LBA and Bifidobacterium animalis subsp . lactis BL-04) in milk fermented with Lactobacillus delbrueckii subsp . bulgaricus LB340 and Streptococcus thermophilus TAO (yoghurt – Y). Each probiotic strain was grown separately in co-culture with Y and in blends of different combinations. Blends affected fermentation time(s), pH and firmness during storage at 4°C. The product made with Y plus B. animalis subsp . lactis and L. rhamnosus had counts of viable cells at the end of shelf life that met the minimum required to achieve probiotic effect. However, L. acidophilus and L. delbrueckii subsp . bulgaricus were inhibited.  相似文献   

17.
ABSTRACT:  The effects of supplementation of oligofructose or inulin on the rheological characteristics and survival of Lactobacillus acidophilus La-5 and Bifidobacterium animalis Bb-12 in low-fat ice cream stored at –18 °C for 90 d were studied. Addition of oligofructose or inulin to ice cream mix significantly increased apparent viscosity and overrun and developed the melting properties in ice cream during storage ( P < 0.05). However, the highest increase in firmness, the lowest change in melting properties, and the longest 1st dripping time were obtained in probiotic ice cream containing inulin ( P < 0.05). Some textural properties have also improved especially by the end of storage. Freezing process caused a significant decrease in the viability of Lactobacillus acidophilus La-5 and Bifidobacterium animalis Bb-12 ( P < 0.05). Oligofructose significantly improved the viability of L. acidophilus La-5 and B. animalis Bb-12 in ice cream mix ( P < 0.05). Although the viable numbers for both bacteria decreased throughout the storage, the minimum level of 106 CFU/g was maintained for B. animalis Bb-12 in only ice cream with oligofructose during storage.  相似文献   

18.
Probiotic plain and stirred fruit yogurts were made from goat's milk using bacterial cultures comprising, Lactobacillus acidophilus LA-5, Bifidobacterium animalis subsp. lactis BB-12 and Propionibacterium jensenii 702. The products were stored at 4°C for 4weeks, during which time the viability of the yogurt starter culture and probiotic bacteria was analysed weekly. P. jensenii 702 demonstrated the highest viability (10(8)cfu/g) in all types of yogurt throughout the storage period, while the viability of the bifidobacteria (~10(7)cfu/g) also remained above the minimum therapeutic level. The viability of L. acidophilus LA-5 fell below 10(6)cfu/g in yogurts, however, the addition of fruit juice appeared to support the viability of lactobacilli, with higher microorganism numbers observed in fruit yogurts than in plain yogurt throughout the shelf life. Addition of fruit juice significantly increased the syneresis, and decreased viscosity and water holding capacity of yogurts (p<0.05), and also enhanced their sensory acceptability.  相似文献   

19.
A Box‐Behnken design was applied to optimise the viability of Lactobacillus acidophilus and Bifidobacterium bifidum in probiotic yoghurt containing a novel exudative Zedo gum. The effect of incubation temperature, probiotic inoculation rate, storage time and Zedo gum concentration on quality indices of the yoghurt were explored. With respect to probiotics viability, probiotic inoculation rate was the most important factor followed by the storage time. Zedo gum did not show any significant effect on probiotics viability. The optimum conditions of probiotic yoghurt production were as follows: probiotic inoculation level, 12.8 g/100 kg of milk; incubation temperature, 41.6 °C; and Zedo gum concentration, 0.13%.  相似文献   

20.
ABSTRACT:  Eight strains of probiotic bacteria, including Lactobacillus rhamnosus , Bifidobacterium longum, L. salivarius, L. plantarum , L. acidophilus , L. paracasei , B. lactis type Bl-O4, and B. lactis type Bi-07, were studied for their acid, bile, and heat tolerance. Microencapsulation in alginate matrix was used to enhance survival of the bacteria in acid and bile as well as a brief exposure to heat. Free probiotic organisms were used as a control. The acid tolerance of probiotic organisms was tested using HCl in MRS broth over a 2-h incubation period. Bile tolerance was tested using 2 types of bile salts, oxgall and taurocholic acid, over an 8-h incubation period. Heat tolerance was tested by exposing the probiotic organisms to 65 °C for up to 1 h. Results indicated microencapsulated probiotic bacteria survived better ( P < 0.05) than free probiotic bacteria in MRS containing HCl. When free probiotic bacteria were exposed to oxgall, viability was reduced by 6.51-log CFU/mL, whereas only 3.36-log CFU/mL was lost in microencapsulated strains. At 30 min of heat treatment, microencapsulated probiotic bacteria survived with an average loss of only 4.17-log CFU/mL, compared to 6.74-log CFU/mL loss with free probiotic bacteria. However, after 1 h of heating both free and microencapsulated probiotic strains showed similar losses in viability. Overall microencapsulation improved the survival of probiotic bacteria when exposed to acidic conditions, bile salts, and mild heat treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号