首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Alexander TA  Le DM 《Applied optics》2007,46(18):3878-3890
Surface-enhanced-Raman-spectroscopy (SERS) can be made an attractive approach for the identification of Raman-active compounds and biological materials (i.e., toxins, viruses, or intact bacterial cells or spores) through development of reproducible, spatially uniform SERS-active substrates. Recently, reproducible (from substrate to substrate), spatially homogeneous (over large areas) SERS-active substrates have been commercialized and are now available in the marketplace. Scanning electron microscopy and high-resolution, tapping-mode atomic force microscopy have been used to analyze these novel plasmonic surfaces for topographical consistency. Additionally, we have assessed, by wavelength-tunable microreflectance spectrometry, the spatial distribution of the localized surface plasmon resonance (LSPR) across a single substrate surface as well as the LSPR lambda(MAX) variance from substrate to substrate. These analyses reveal that these surfaces are topologically uniform with small LSPR variance from substrate to substrate. Further, we have utilized these patterned surfaces to acquire SERS spectral signatures of four intact, genetically distinct Bacillus spore species cultivated under identical growth conditions. Salient spectral signature features make it possible to discriminate among these genetically distinct spores. Additionally, partial least squares, a multivariate calibration method, has been used to develop personal-computer-borne algorithms useful for classification of unknown spore samples based solely on SERS spectral signatures. To our knowledge, this is the first report detailing application of these commercially available SERS-active substrates to identification of intact Bacillus spores.  相似文献   

2.
Ultraviolet (UV) resonance Raman spectra of Bacillus subtilis endospores have been excited at 244 nm. Spectra can be interpreted in terms of contributions from calcium dipicolinate and nucleic acid components. Differences between spectra of spores and vegetative cells are very large and are due to the dominance of the dipicolinate features in the spore spectra. Because the DNA and RNA composition of B. subtilis spores is known and because the cross-sections of Raman bands belonging to DNA and RNA bases are known, it is possible to calculate resonance Raman spectral cross-sections for the spore Raman peaks associated with the nucleic acids. The cross-sections of peaks associated with calcium dipicolinate have been measured from aqueous solutions. Cross-section values of the dominant 1017 cm(-1) calcium dipicolinate peak measured from the Bacillus spores have been shown to be consistent with a calcium dipicolinate composition of ten percent or less by weight in the spores. It is suggested that spectral cross-sections of endospores excited at 244 nm can be estimated to be the sum of the cross-sections of the calcium dipicolinate, DNA, and RNA components of the spore. It appears that the peaks due to DNA and RNA can be used as an internal standard in the calculation of spore Raman peak cross-sections, and potentially the amount of calcium dipicolinate in spores. It is estimated on the basis of known nucleic acid base cross-sections that the most intense Raman band of the Bacillus subtilis spore spectra has a cross-section of no more than 4 x 10(-18) cm(2)/mol-sr.  相似文献   

3.
Fourier transform infrared photoacoustic spectroscopy (FTIR-PAS) has been applied for the first time to the identification and speciation of bacterial spores. A total of forty specimens representing five strains of Bacillus spores (Bacillus subtilis ATCC 49760, Bacillus atrophaeus ATCC 49337, Bacillus subtilis 6051, Bacillus thuringiensis subsp. kurstaki, and Bacillus globigii Dugway) were analyzed. Spores were deposited, with minimal preparation, into the photoacoustic sample cup and their spectra recorded. Principal component analysis (PCA), classification and regression trees (CART), and Mahalanobis distance calculations were used on this spectral library to develop algorithms for step-wise classification at three levels: (1) bacterial/nonbacterial, (2) membership within the spore library, and (3) bacterial strain. Internal cross-validation studies on library spectra yielded classification success rates of 87% or better at each of these three levels. Analysis of fifteen blind samples, which included five samples of spores already in the spectral library, two samples of closely related Bacillus globigii 01 spores not in the library, and eight samples of nonbacterial materials, yielded 100% accuracy in distinguishing among bacterial/nonbacterial samples, membership in the library, and bacterial strains within the library.  相似文献   

4.
We have fully characterized the mass spectral signatures of individual Bacillus atrophaeus spores obtained using matrix-free laser desorption/ionization bioaerosol mass spectrometry (BAMS). Mass spectra of spores grown in unlabeled, 13C-labeled, and 15N-labeled growth media were used to determine the number of carbon and nitrogen atoms associated with each mass peak observed in mass spectra from positive and negative ions. To determine the parent ion structure associated with fragment ion peaks, the fragmentation patterns of several chemical standards were independently determined. Our results confirm prior assignments of dipicolinic acid, amino acids, and calcium complex ions made in the spore mass spectra. The identities of several previously unidentified mass peaks, key to the recognition of Bacillus spores by BAMS, have also been revealed. Specifically, a set of fragment peaks in the negative polarity is shown to be consistent with the fragmentation pattern of purine nucleobase-containing compounds. The identity of m/z = +74, a marker peak that helps discriminate B. atrophaeus from Bacillus thuringiensis spores grown in rich media is [N1C4H12]+. A probable precursor molecule for the [N1C4H12]+ ion observed in spore spectra is trimethylglycine (+N(CH3)3CH2COOH), which produces a m/z = +74 peak when ionized in the presence of dipicolinic acid. A clear assignment of all the mass peaks in the spectra from bacterial spores, as presented in this work, establishes their relationship to the spore chemical composition and facilitates the evaluation of the robustness of "marker" peaks. This is especially relevant for peaks that have been used to discriminate Bacillus spore species, B. thuringiensis and B. atrophaeus, in our previous studies.  相似文献   

5.
Surface-enhanced Raman spectroscopy (SERS) can provide rapid fingerprinting of biomaterial in a nondestructive manner. The adsorption of colloidal silver to biological material suppresses native biofluorescence while providing electromagnetic surface enhancement of the normal Raman signal. This work validates the applicability of qualitative SER spectroscopy for analysis of bacterial species by utilizing principal component analysis (PCA) to show discrimination of biological threat simulants, based upon multivariate statistical confidence limits bounding known data clusters. Gram-positive Bacillus spores (Bacillus atrophaeus, Bacillus anthracis, and Bacillus thuringiensis) are investigated along with the Gram-negative bacterium Pantoea agglomerans.  相似文献   

6.
Surface-enhanced Raman spectroscopy (SERS) can be made an attractive approach for identification of Raman-active compounds and biological materials (i.e., toxins, viruses, or intact bacterial cells/spores) through development of reproducible, spatially uniform SERS-active substrates. Recently, reproducible (from substrate-to-substrate), spatially homogeneous (over large areas) SERS-active substrates have been commercialized and are now available in the marketplace. We have utilized these patterned surfaces to acquire SERS spectral signatures of intact bovine papular stomatitis, pseudocowpox, and Yaba monkey tumor viruses. Salient spectral signature features make it possible to discriminate among these genetically distinct Poxviridae-Chordopoxvirinae virions. In addition, partial least-squares, a multivariate calibration method, has been used to develop personal computer-borne algorithms useful for classification of unknown Parapoxvirus (e.g., bovine papular stomatitis virus and pseudocowpox virus) samples based solely on SERS spectral signatures. To our knowledge, this is the first report detailing application of these commercial-off-the-shelf (COTS) SERS-active substrates to identification of intact poxviruses.  相似文献   

7.
Raman spectroscopy is being evaluated as a candidate technology for waterborne pathogen detection. We have investigated the impact of key experimental and background interference parameters on the bacterial species level identification performance of Raman detection. These parameters include laser-induced photodamage threshold, composition of water matrix, and organism aging in water. The laser-induced photodamage may be minimized by operating a 532 nm continuous wave laser excitation at laser power densities below 2300 W/cm(2) for Grampositive Bacillus atrophaeus (formerly Bacillus globigii, BG) vegetative cells, 2800 W/cm(2) for BG spores, and 3500 W/cm(2) for Gram-negative E. coli (EC) organisms. In general, Bacillus spore microorganism preparations may be irradiated with higher laser power densities than the equivalent Bacillus vegetative preparations. In order to evaluate the impact of background interference and organism aging, we selected a biomaterials set comprising Gram-positive (anthrax simulants) organisms, Gram-negative (plague simulant) organisms, and proteins (toxin simulants) and constructed a Raman signature classifier that identifies at the species level. Subsequently, we evaluated the impact of tap water and storage time in water (aging) on the classifier performance when characterizing B. thuringiensis spores, BG spores, and EC cell preparations. In general, the measured Raman signatures of biological organisms exhibited minimal spectral variability with respect to the age of a resting suspension and water matrix composition. The observed signature variability did not substantially degrade discrimination performance at the genus and species levels. In addition, Raman chemical imaging spectroscopy was used to distinguish a mixture of BG spores and EC cells at the single cell level.  相似文献   

8.
The characterization, detection, and identification of bacteria using surface-enhanced Raman scattering (SERS) spectroscopy is drawing considerable attention due to its ability to provide rich intrinsic molecular information about molecules and molecular structures in close proximity to noble metal surfaces. However, sample preparation methods and experimental conditions must be carefully evaluated in order to obtain healthy, interpretable, and comparable results. In this study, several bacterial species including E. coli, B. megaterium, S. aureus, and S. cohnii were systematically evaluated to demonstrate the source of the spectral features of bacterial SERS spectra. It was found that the features observed in bacterial SERS spectra originate mostly from the bacteria surface with some contributions from metabolic activity or molecular species detached from the bacteria surface during sample preparation.  相似文献   

9.
A spectroscopic assay based on surface enhanced Raman scattering (SERS) using silver nanorod array substrates has been developed that allows for rapid detection of trace levels of viruses with a high degree of sensitivity and specificity. This novel SERS assay can detect spectral differences between viruses, viral strains, and viruses with gene deletions in biological media. The method provides rapid diagnostics for detection and characterization of viruses generating reproducible spectra without viral manipulation.  相似文献   

10.
Raman spectroscopy has recently been shown to be a potentially powerful whole-organism fingerprinting technique and is attracting interest within microbial systematics for the rapid identification of bacteria and fungi. However, while the Raman effect is so weak that only approximately 1 in 10(8) incident photons are Raman scattered (so that collection times are in the order of minutes), it can be greatly enhanced (by some 10(3)-10(6)-fold) if the molecules are attached to, or microscopically close to, a suitably roughened surface, a technique known as surface-enhanced Raman scattering (SERS). In this study, SERS, employing an aggregated silver colloid substrate, was used to analyze a collection of clinical bacterial isolates associated with urinary tract infections. While each spectrum took 10 s to collect, to acquire reproducible data, 50 spectra were collected making the spectral acquisition times per bacterium approximately 8 min. The multivariate statistical techniques of discriminant function analysis (DFA) and hierarchical cluster analysis (HCA) were applied in order to group these organisms based on their spectral fingerprints. The resultant ordination plots and dendrograms showed correct groupings for these organisms, including discrimination to strain level for a sample group of Escherichia coli, which was validated by projection of test spectra into DFA and HCA space. We believe this to be the first report showing bacterial discrimination using SERS.  相似文献   

11.
Surface-enhanced Raman scattering (SERS) utilizing colloidal silver has already been shown to provide a rapid means of generating "whole-organism fingerprints" for use in bacterial identification and discrimination. However, one of the main drawbacks of the technique for the analysis of microbiological samples with optical Raman microspectroscopy has been the inability to acquire pre-emptively a region of the sample matrix where both the SERS substrate and biomass are both present. In this study, we introduce a Raman interface for scanning electron microscopy (SEM) and demonstrate the application of this technology to the reproducible and targeted collection of bacterial SERS spectra. In secondary electron mode, the SEM images clearly reveal regions of the sample matrix where the sodium borohydride-reduced silver colloidal particles are present, Stokes spectra collected from these regions are rich in vibrational bands, whereas spectra taken from other areas of the sample elicit a strong fluorescence response. Replicate SERS spectra were collected from two bacterial strains and show excellent reproducibility both by visual inspection and as demonstrated by principal components analysis on the whole SERS spectra.  相似文献   

12.
The detection and identification of individual bioaerosols using laser-induced breakdown spectroscopy (LIBS) is investigated using aerosolized Bacillus spores. Spores of Bacillus atrophaeous, Bacillus pumilus, and Bacillus stearothemophilus were introduced into an aerosol flow stream in a prescribed manner such that single-particle LIBS detection was realized. Bacillus spores were successfully detected based on the presence of the 393.4- and 396.9-nm calcium atomic emission lines. Statistical analyses based on the aerosol number density, the LIBS-based spore sampling frequency, and the distribution of the resulting calcium mass loadings support the conclusion of individual spore detection within single-shot laser-induced plasmas. The average mass loadings were in the range of 2-3 fg of calcium/Bacillus spore, which corresponds to a calcium mass percentage of approximately 0.5%. While individual spores were detected based on calcium emission, the resulting Bacillus spectra were free from CN emission bands, which has implications for the detection of elemental carbon, and LIBS-based detection of single spores based on the presence of magnesium or sodium atomic emission was unsuccessful. Based on the current instrumental setup and analyses, real-time LIBS-based detection and identification of single Bacillus spores in ambient (i.e., real life) conditions appears unfeasible.  相似文献   

13.
Psychro-active bacteria, important constituents of polar ecosystems, have a unique ability to remain active at temperatures below 0 degrees C, yet it is not known to what extent the composition of their outer cell surfaces aids in their low-temperature viability. In this study, aqueous suspensions of five strains of Arctic psychro-active marine bacteria (PAMB) (mostly sea-ice isolates), were characterized by surface-enhanced Raman spectroscopy (SERS) and compared with SERS spectra from E. coli and P. aerigunosa. We find the SERS spectra of the five psychro-active bacterial strains are similar within experimental reproducibility. However, these spectra are significantly different from the spectra of P. aeruginosa and E. coli. We find that the relative intensities of many of the common peaks show the largest differences reported so far for bacterial samples. An indication of a peak was found in the PAMB spectra that has been identified as characteristic of unsaturated fatty acids and suggests that the outer membranes of the PAMB may contain unsaturated fatty acids. We find that using suspensions of silver colloid particles greatly intensifies the Raman peaks and quenches the fluorescence from bacterial samples. This technique is useful for examination of specific biochemical differences among bacteria.  相似文献   

14.
Chen D  Huang SS  Li YQ 《Analytical chemistry》2006,78(19):6936-6941
Germination is the process by which a dormant spore returns to its vegetative state when exposed to suitable conditions. We report on the real-time detection of kinetic germination and heterogeneity of single Bacillus thuringiensis spores in an aqueous solution by monitoring the calcium dipicolinate (CaDPA) biomarker with laser tweezers Raman spectroscopy (LTRS). A single B. thuringiensis spore was optically trapped in a focused laser beam, and its Raman spectra were recorded sequentially in time after exposure to a nutrient-rich medium, so that the CaDPA amount inside the trapped spore was monitored during the dynamic germination process. The CaDPA content in an individual spore was observed to remain almost constant in the first period and then decrease very rapidly due to its release into the medium (within approximately 2 min). The time-to-germination (t(germ)), defined as the time required for the CaDPA band intensity to decrease to the midpoint from its initial value, was found to be stochastic for individual spores with a typical value of approximately 30 min under the experimental conditions. The distribution of the time-to-germination was measured from a time lapse measurement of a population of spores. The results demonstrated that LTRS can be used to noninvasively detect the kinetic germination process at the single-cell level and explore cellular heterogeneity.  相似文献   

15.
The rapid chemical analysis of individual cells is an analytical capability that will profoundly impact many fields including bioaerosol detection for biodefense and cellular diagnostics for clinical medicine. This article describes a mass spectrometry-based analytical technique for the real-time and reagentless characterization of individual airborne cells without sample preparation. We characterize the mass spectral signature of individual Bacillus spores and demonstrate the ability to distinguish two Bacillus spore species, B. thuringiensis and B.atrophaeus, from one another very accurately and from the other biological and nonbiological background materials tested with no false positives at a sensitivity of 92%. This example demonstrates that the chemical differences between these two Bacillus spore species are consistently and easily detected within single cells in seconds.  相似文献   

16.
Surface-enhanced Raman scattering (SERS) is a phenomenon that occurs on nanoscale-roughed metallic surface. The magnitude of the Raman scattering signal can be greatly enhanced when the scatterer is placed in the very close vicinity of the surface, which enables this phenomenon to be a highly sensitive analytical technique. SERS inherits the general strongpoint of conventional Raman spectroscopy and overcomes the inherently small cross section problem of a Raman scattering. It is a sensitive and nondestructive spectroscopic method for biological samples, and can be exploited either for the delivery of molecular structural information or for the detection of trace levels of analytes. Therefore, SERS has long been regarded as a powerful tool in biomedical research. Metallic nanostructure plays a key role in all the biomedical applications of SERS because the enhanced Raman signal can only be obtained on the surface of a finely divided substrate. This review focuses on progress made in the use of SERS as an analytical technique in bio-imaging, analysis and detection. Recent progress in the fabrication of SERS active nanostructures is also highlighted.  相似文献   

17.
Han XX  Jia HY  Wang YF  Lu ZC  Wang CX  Xu WQ  Zhao B  Ozaki Y 《Analytical chemistry》2008,80(8):2799-2804
We have developed a new analytical procedure for label-free protein detection designated "Western SERS", consisting of protein electrophoresis, Western blot, colloidal silver staining, and surface-enhanced Raman scattering (SERS) detection. A novel method of silver staining for Western blot that uses a silver colloid, an excellent SERS-active substrate, is first proposed in the present study. During the process of silver staining, interactions between proteins and silver nanoparticles result in the emergence of SERS of proteins. In the present study, we use myoglobin (Mb) and bovine serum albumin (BSA) as model proteins. From different protein bands on a nitrocellulose (NC) membrane, we have observed surface-enhanced resonance Raman scattering (SERRS) spectra of Mb and SERS spectra of BSA. The proposed technique offers dual advantages of simplicity and high sensitivity. On one hand, after the colloidal silver staining, we can detect label-free multi-proteins directly on a NC membrane without digestion, extraction, and other pretreatments. On the other hand, the detection limit of the Western SERS is almost consistent with the detection limit of colloidal silver staining, and the SERRS detection limit of Mb is found to be 4 ng/band. This analytical method, which combines the technique of protein separation with SERS, may be a powerful protocol for label-free protein detection in proteomic research.  相似文献   

18.
It has been recently suggested [N. E. Marotta and L. A. Bottomley, Appl. Spectrosc. 64, 601-606 (2010)] that previously reported surface-enhanced Raman scattering (SERS) spectra of vegetative bacterial cells are due to residual cell growth media that were not properly removed from samples of the lab-cultured microorganism suspensions. SERS spectra of several commonly used cell growth media are similar to those of bacterial cells, as shown here and reported elsewhere. However, a multivariate data analysis approach shows that SERS spectra of different bacterial species grown in the same growth media exhibit different characteristic vibrational spectra, SERS spectra of the same organism grown in different media display the same SERS spectrum, and SERS spectra of growth media do not cluster near the SERS spectra of washed bacteria. Furthermore, a bacterial SERS spectrum grown in a minimal medium, which uses inorganics for a nitrogen source and displays virtually no SERS features, exhibits a characteristic bacterial SERS spectrum. We use multivariate analysis to show how successive water washing and centrifugation cycles remove cell growth media and result in a robust bacterial SERS spectrum in contrast to the previous study attributing bacterial SERS signals to growth media.  相似文献   

19.
Bacillus anthracis spores have been used as biological weapons and the possibility of their further use requires surveillance systems that can accurately and reliably detect their presence in the environment. These systems must collect samples from a variety of matrices, process the samples, and detect the spores. The processing of the sample may include removal of inhibitors, concentration of the target, and extraction of the target in a form suitable for detection. Suitable reference materials will allow the testing of each of these steps to determine the sensitivity and specificity of the detection systems. The development of uniform and well-characterized reference materials will allow the comparison of different devices and technologies as well as assure the continued performance of detection systems. This paper discusses the special requirements of reference materials for Bacillus anthracis spores that could be used for testing detection systems. The detection of Bacillus anthracis spores is based on recognition of specific characteristics (markers) on either the spore surface or in the nucleic acids (DNA). We have reviewed the specific markers and their relevance to characterization of reference materials. We have also included the approach for the characterization of candidate reference materials that we are developing at the NIST laboratories. Additional applications of spore reference materials would include testing sporicidal treatments, techniques for sampling the environment, and remediation of spore-contaminated environments.  相似文献   

20.
Over the past few decades, surface-enhanced Raman spectroscopy (SERS) has garnered respect as an analytical technique with significant chemical and biological applications. SERS is important for the life sciences because it can provide trace level detection, a high level of structural information, and enhanced chemical detection. However, creating and successfully implementing a sensitive, reproducible, and robust SERS active substrate continues to be a challenging task. Herein, we report a novel method for SERS that is based upon using multiplexed microfluidics (MMFs) in a polydimethylsiloxane platform to perform parallel, high throughput, and sensitive detection/identification of single or various analytes under easily manipulated conditions. A facile passive pumping method is used to deliver Ag colloids and analytes into the channels where SERS measurements are done under nondestructive flowing conditions. With this approach, SERS signal reproducibility is found to be better than 7%. Utilizing a very high numerical aperture microscope objective with a confocal-based Raman spectrometer, high sensitivity is achieved. Moreover, the long working distance of this objective coupled with an appreciable channel depth obviates normal alignment issues expected with translational multiplexing. Rapid evaluation of the effects of anion activators and the type of colloid employed on SERS performance are used to demonstrate the efficiency and applicability of the MMF approach. SERS spectra of various pesticides were also obtained. Calibration curves of crystal violet (non-resonant enhanced) and Mitoxantrone (resonant enhanced) were generated, and the major SERS bands of these analytes were observable down to concentrations in the low nM and sub-pM ranges, respectively. While conventional random morphology colloids were used in most of these studies, unique cubic nanoparticles of silver were synthesized with different sizes and studied using visible wavelength optical extinction spectrometry, scanning electron microscopy, and the MMF-SERS approach.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号