首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
Strong chiroptical effects recently reported result from the interaction of light with chiral plasmonic nanostructures. Such nanostructures can be used to enhance the chiroptical response of chiral molecules and could also significantly increase the enantiomeric excess of direct asymmetric synthesis and catalysis. Moreover, in optical metamaterials, chirality leads to negative refractive index and all the promising applications thereof. In this Progress Report, we highlight four different strategies which have been used to achieve giant chiroptical effects in chiral nanostructures. These strategies consecutively highlight the importance of chirality in the nanostructures (for linear and nonlinear chiroptical effects), in the experimental setup and in the light itself. Because, in the future, manipulating chirality will play an important role, we present two examples of chiral switches. Whereas in the first one, switching the chirality of incoming light causes a reversal of the handedness in the nanostructures, in the second one, switching the handedness of the nanostructures causes a reversal in the chirality of outgoing light.  相似文献   

5.
6.
7.
8.
9.
Coherent light sources providing sub‐wavelength confined modes are in ever more demand to face new challenges in a variety of disciplines. Scalability and cost‐effective production of these systems are also highly desired. The use of ferroelectrics in functional optical platforms, on which plasmonic arrangements can be formed, is revealed as a simple and powerful method to develop coherent light sources with improved and novel functionalities at the nanoscale. Two types of sources with sub‐diffraction spatial confinement and improved performances are presented: i) plasmon‐assisted solid‐state nanolasers based on the interaction between metallic nanostructures and optically active rare earth doped ferroelectric crystals and ii) nonlinear radiation sources based on quadratic frequency mixing processes that are enhanced by means of localized surface plasmon (LSP) resonances. The mechanisms responsible for the intensification of the radiation–matter interaction processes by LSP resonances are discussed in each case. The challenges, potential applications, and future perspectives of the field are highlighted.  相似文献   

10.
Optically nonlinear Pb2B5O9X (X = Cl, Br) borate halides are an important group of materials for second harmonic generation (SHG). Additionally, they also possess excellent photocatalytic activity and stability in the process of dechlorination of chlorophenols, which are typical persistent organic pollutants. It would be of great interest to conduct in situ (photo‐) catalysis investigations during the whole photocatalytic process by SHG when considering them as photocatalytic materials. In order to get superior photocatalytic efficiency and maximum surface information, small particles are highly desired. Here, a low‐cost and fast synthesis route that allows growing microcrystalline optically nonlinear Pb2B5O9X borate halides at large quantities is introduced. When applying the ionothermal growth process at temperatures between 130 and 170 °C, microcrystallites with an average size of about 1 µm precipitate with an orthorhombic hilgardite‐like borate halide structure. Thorough examinations using powder X‐ray diffraction and scanning electron microscopy, the Pb2B5O9X microcrystals are indicated to be chemically pure and single‐phased. Besides, the Pb2B5O9X borate halides' SHG efficiencies are confirmed using confocal SHG microscopy. The low‐temperature synthesis route thus makes these borate halides a highly desirable material for surface studies such as monitoring chemical reactions with picosecond time resolution and in situ (photo‐) catalysis investigations.  相似文献   

11.
Synthesis and optical properties of cubic gold nanoframes   总被引:1,自引:0,他引:1  
This paper describes a facile method of preparing cubic Au nanoframes with open structures via the galvanic replacement reaction between Ag nanocubes and AuCl2 . A mechanistic study of the reaction revealed that the formation of Au nanoframes relies on the diffusion of both Au and Ag atoms. The effect of the edge length and ridge thickness of the nanoframes on the localized surface plasmon resonance peak was explored by a combination of discrete dipole approximation calculations and single nanoparticle spectroscopy. With their hollow and open structures, the Au nanoframes represent a novel class of substrates for applications including surface plasmonics and surface-enhanced Raman scattering.   相似文献   

12.
13.
14.
15.
16.
Recently, second harmonic generation (SHG) nanomaterials have been generated that are efficiently employed in the classical (NIR) and extended (NIR‐II) near infrared windows using a multiphoton microscope. The aim was to test bismuth ferrite harmonic nanoparticles (BFO‐HNPs) for their ability to monitor pulmonary macrophages in mice. BFO‐loaded MH‐S macrophages are given intratracheally to healthy mice or BFO‐HNPs are intranasally instilled in mice with allergic airway inflammation and lung sections of up to 100 μM are prepared. Using a two‐photon‐laser scanning microscope, it is shown that bright BFO‐HNPs signals are detected from superficially localized cells as well as from deep within the lung tissue. BFO‐HNPs are identified with an excellent signal‐to‐noise ratio and virtually no background signal. The SHG from the nanocrystals can be distinguished from the endogenous collagen–derived SHG around the blood vessels and bronchial structures. BFO‐HNPs are primarily taken up by M2 alveolar macrophages in vivo. This SHG imaging approach provides novel information about the interaction of macrophages with cells and the extracellular matrix in lung disease as it is capable of visualizing and tracking NP‐loaded cells at high resolution in thick tissues with minimal background fluorescence.  相似文献   

17.
Currently, the limitations of conventional methods for fabricating metamaterials composed of well‐aligned nanoscale inclusions either lack the necessary freedom to tune the structural geometry or are difficult for large‐area synthesis. In this Communication, the authors propose a fabrication route to create well‐ordered silver nano forest/ceramic composite single‐layer or multi‐layer vertically stacked structures, as a distinctive approach to make large‐area nanoscale metamaterials. To take advantage of direct growth, the authors fabricate single‐layer nanocomposite films with a well‐defined sub‐5 nm interwire gap and an average nanowire diameter of ≈3 nm. Further, artificially constructed multilayer metamaterial films are easily fabricated by vertical integration of different single‐layer metamaterial films. Based upon the thermodynamics as well as thin film growth dynamics theory, the growth mechanism is presented to elucidate the formation of such structure. Intriguing steady and transient optical properties in these assemblies are demonstrated, owing to their nanoscale structural anisotropy. The studies suggest that the self‐organized nanocomposites provide an extensible material platform to manipulate optical response in the region of sub‐5 nm scale.  相似文献   

18.
We present a new theoretical tool for simulating optical trapping of nanoparticles in the presence of an arbitrary metamaterial design. The method is based on rigorously solving Maxwell’s equations for the metamaterial via a hybrid discrete-dipole approximation/multiple-scattering technique and direct calculation of the optical force exerted on the nanoparticle by means of the Maxwell stress tensor. We apply the method to the case of a spherical polystyrene probe trapped within the optical landscape created by illuminating of a plasmonic metamaterial consisting of periodically arranged tapered metallic nanopyramids. The developed technique is ideally suited for general optomechanical calculations involving metamaterial designs and can compete with purely numerical methods such as finite-difference or finite-element schemes.  相似文献   

19.
The advent of high intensity lasers coupled with the recent advances in crystal technology has led to rapid progress in the field of nonlinear optics. This article traces the history of materials development that has taken place over the past forty odd years and dwells on the current status in this important area. The materials aspect is discussed under three classes viz. inorganic, organic and semiorganic crystals. In the end, some of the crystal growth work that has been carried out in author’s laboratory is presented.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号