首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Natural circulation is widely used in nuclear reactor systems as the passive safety system. With the development of the floating nuclear power plant (FNPP), researchers should pay more attention to flow and heat transfer characteristics for the natural circulation under ocean conditions for the safety of FNPP. In this paper, the flow characteristics in a single-phase natural circulation system were investigated and the effects of heaving, rolling and coupled motions were analyzed. The oscillation amplitude of flow rate increases with the increase of period in a certain range and maximum acceleration under heaving motions. With the increase of oscillation intensity (higher frequency and larger maximum rolling angle), the oscillation amplitude increases and the average flow rate decreases under rolling motions. Moreover, the lateral displacement of rolling center changes the oscillation period and induces larger amplitude oscillations. The flow characteristic becomes more complex when the system is subjected to coupled motions. The oscillation period is the least common multiple of two motions’ periods. The oscillation induced by coupled motions makes the system more unstable than that induced by an individual motion. The potential superposition effect exists under coupled motions and needs to be addressed for the operation safety.  相似文献   

2.
The effect of ship motion, such as heaving and rolling, on the thermal-hydraulic behavior of marine reactors was investigated. The COBRA-IV-I CODE was modified to analyse the thermal-hydraulic performance on the critical heat flux under oscillating acceleration conditions. The critical heat flux in the code was verified experimentally using freon as a comparison. The Critical Heat Flux Ratio (CHFR) at the hottest channel of the PWR subchannel was analysed using the same code. A system code RETRAN-02/MOD2-GRAV was developed by improving RETRAN-02/MOD2 to simulate the thermal hydraulic transient under ship motion. It was verified by comparison using the experimental results of both two-phase natural circulation flow under heaving motion and single-phase natural circulation flow at an inclined attitude. The code was used to analyse reactor plant behavior in the nuclear ship Mutsu. Natural circulation flow during rolling motion was investigated experimentally. The characteristics of loop flow and core flow rates were clarified. The core flow rate correlated well with the Reynolds number of rolling motion.  相似文献   

3.
摇摆运动引起的波动与自然循环密度波型脉动的叠加   总被引:4,自引:1,他引:3  
针对海洋条件(即摇摆工况)下.核动力装置自然循环流动不稳定的特点进行了实验研究结果表明,摇摆引起的流量波动的附加量与自然循环密度波型脉动的流量脉动相叠加.加剧了系统的不稳定.通过频谱分析,分析了叠加效应的强弱。  相似文献   

4.
低压低干度自然循环流量漂移分析   总被引:1,自引:0,他引:1  
在 5MW核供热堆全尺寸全参数模拟试验回路HRTL 5上进行的实验中 ,观察到在一定条件下系统发生静态流量漂移的同时 ,伴随动态流量振荡。本文总结了HRTL 5模拟试验回路上的实验研究结果 ,分析了低压低干度自然循环系统的特点、欠热沸腾和闪蒸的作用机理 ,较完整地描述了自然循环流量漂移的整个过程。分析结果表明 :1 )在自然循环系统中 ,欠热沸腾和闪蒸对流动稳定性具有重要作用 ;2 )自然循环流量漂移是一个长热工过程 ,动态振荡也可以发生在静态流量漂移过程中 ;3 )在静态流量漂移的发生、发展并向动态振荡转变的过程中 ,先是欠热沸腾占主导地位 ,然后逐渐转变为闪蒸占主导地位 ,最后主要表现为密度波振荡的形式。自然循环流量漂移对 5MW堆的设计、安全分析以及升级开发具有重要价值。  相似文献   

5.
The transient behavior of natural circulation for boiling two-phase flow was investigated by simulating normal and abnormal start-up conditions to research the feasibility of natural circulation BWRs such as the SBWR. It was found that the instabilities, which are out-of-phase geysering, in-phase natural circulation oscillation and out-of-phase density wave instability, may occur during the start-up when the vapor generation rate is insufficient. In this paper, the mechanism of in-phase natural circulation oscillation induced by hydrostatic head fluctuation in steam separators, which has never been understood well enough, is experimentally clarified. Next, the effect of system pressure on the occurrences of the geysering and the natural circulation oscillation are investigated. Finally, from the results, a recommendation is provided to establish the rational start-up procedure and reactor configuration for natural circulation BWRs.  相似文献   

6.
《Annals of Nuclear Energy》2005,32(4):379-397
In this paper, two-phase flow instability in natural circulation loops of China Advanced Research Reactor (CARR) has been investigated. CARR is a low pressure and low power density research reactor. A natural circulation instability analysis model is developed for the natural circulation loop of CARR. The homogeneous flow model is used to establish the system control equations. The non-uniform heating and subcooled boiling heat transfer is included. The accumulation heat of the wall is also included. Numerical method of Gear is employed to solve the system equations documented in terms of ordinary differential equations. According to the calculation results, stability maps of the natural circulation loop, which confirm the presence of an instability region under the conditions of low equilibrium quality in the outlet and low pressure, are obtained. It is a special kind of density wave oscillation (DWO) that occurs in very low equilibrium quality region with the characteristics of geysering and ‘Type-I’ DWO at the same time. The calculation results show such oscillation course clearly. The variations of the mass flow rate, the pressure drop and the boiling boundary are analyzed separately. Especially, the phase-space trajectory of the boiling boundary and the mass flow rate is discussed. Finally the oscillation frequency is discussed. The calculated results have important significance for the safety operation and accidental analysis of CARR.  相似文献   

7.
开式自然循环系统启动特性研究   总被引:1,自引:1,他引:0  
针对开式自然循环系统启动特性进行了实验研究。实验表明:不同加热功率下,开式自然循环系统会经历不同的流动演化过程。低加热功率下,系统经历单相循环、喷泉不稳定,最终演化为闪蒸不稳定;中等以及高加热功率下,系统依次经历单相循环、喷泉不稳定和沸腾伴随闪蒸不稳定后,分别演化为稳定的汽液流动和密度波振荡。导致启动过程流动演化的主要原因是随着加热管入口水温的升高,管内沸腾现象持续增强,上升段内闪蒸现象则先增强而后减弱,两者相互作用,导致系统流量、相变位置及空泡份额等发生明显变化。最后,绘制了开式自然循环启动过程的无量纲化流动不稳定区域分布图,并拟合得到了喷泉不稳定及闪蒸主导的不稳定起始边界的经验关系式,拟合结果与实验结果符合良好。  相似文献   

8.
The stability of a self-pressurized natural circulation integral reactor is studied by means of a linear approach, taking the CAREM-25 reactor as reference.A thermohydraulic code has been improved for analysis of linear stability, great emphasis having been placed on the minimization of numerical diffusion and integration errors. A linearization method is implemented by means of numerical perturbations. The results are obtained within the frequency domain. The code is compared to a simpler analytical model, by contrasting stability maps obtained from both models for a test configuration, showing good agreement.In this type of reactor, oscillations are promoted by the two-phase regime in its long riser, and take place due to the counteraction between mass flow and buoyancy force.The stability of the system is strongly influenced by the steam-dome dynamics. Condensation in the steam zone, together with reactor power, determines the dynamical state of the system.The phase-lag introduced by the core dynamic regarding the riser timing, together with the sensitivity of the buoyancy force due to flow changes, determines the sustainability of the oscillation. A parametric study is carried out, gradually increasing the complexity of the model, to analyze the influence of different factors on the oscillation sustainability, concerning physical process and modeling approaches. The analysis includes the relative velocities between phases, the axial power profile along the core, the buoyancy force due to subcooled density changes, the flashing effect, the core dynamic and the pressure feedback due to self-pressurization. The steam-dome-pressure feedback is identified as a stabilizing effect, as long as it decreases the sensitivity of the buoyancy force.  相似文献   

9.
An experiment was performed on the natural circulation test loop HRTL-5, which simulates the geometry and system design of the 5 MW full power natural circulation nuclear heating reactor. Different flow modes, including density wave oscillation and flow excursion et al., were observed in a wide range of inlet sub-cooling at 1.5MPa. By means of self-developed computational codes, the bifurcation chart has been obtained. Consequently the flow excursion boundary has been determined. Through the analysis on the excursion boundary, the method to avoid the flow excursion during startup has been presented. Analytical results show: (1) with the decreasing heat flux or the increasing system pressure, the static flow excursion occurs at higher inlet temperature and its range in the instability maps becomes narrower correspondingly; (2) to decrease the outlet two-phase resistance or increase the inlet single-phase resistance is beneficial to avoid the flow excursion; (3) by means of increasing the system pressure to start up the reactor with low heat flux, the flow excursion and low steam quality density wave oscillation can be successfully avoided. This investigation is meaningful to the reactor safety and the design of the nuclear heating reactors.  相似文献   

10.
在混合能谱超临界水冷堆中,冷却剂通过堆芯过程中跨拟临界点引起的密度等参数的剧烈变化易导致系统产生密度波振荡而不稳定,因此混合能谱超临界水冷堆的稳定性对系统的安全性至关重要。本文利用频域法研究快谱区的流动稳定性,给出在不同状态下的稳定性边界,同时对冷却剂入口流量、进出口压差和通道划分等对稳定性的影响进行了分析。结果表明:大的入口流量有利于系统的稳定;高的进出口压差对系统稳定性有利;轴向功率均匀分布较非均匀分布系统的稳定性差,可提供保守结果;热通道的功率密度越大,对系统的稳定越不利。研究结果对超临界水冷堆设计和优化有一定指导价值。  相似文献   

11.
以一体化全功率自然循环反应堆模拟实验回路为物理原型,建立了起伏条件下自然循环流动的理论分析模型,并通过编制程序进行离散求解,分析了起伏对自然循环的影响机理。结果表明:1)起伏对自然循环具有重要影响,起伏幅度越大,或起伏周期越长,流量波动越大;2)起伏条件下的自然循环是交变力场和密度分布变化综合作用的结果;3)起伏对自然循环的影响在一定参数条件下可能比摇摆更显著,从而可能引起更加严重的后果,需要引起关注。  相似文献   

12.
The natural circulation reactor is widely used in marine environments where thermo-hydraulic performance is heavily affected by the heaving, pitching, and inclining of a ship. This paper theoretically and experimentally investigated steady-state single-phase natural circulation under inclined conditions. Results showed that energy transported by natural circulation was proportional to 1.5 times the power of the temperature difference between the hot leg and the cold leg. Furthermore, a parameter, k, was presented that revealed the comprehensive influence of working fluid properties, resistance characteristics, gravity fields, and loop configurations. k was treated as the criterion for the circulation ability of a loop and it also acted as the basis for evaluating and optimizing different designs. Analysis under the guidance of k was confirmed by a series of experiments performed on a symmetrical two-circuit loop. Both theoretical and experimental results showed that the inclination restrained overall circulation due to the decrease in average altitude difference between the steam generators and the electric heater. The disparity in branch circulations increased with the increase in the inclined angle. A loop design consisting of a large altitude difference and a small width was preferable to confine the influence of inclination. However, if the loop width was too small, it caused a severe reduction in the circulation ability for large angle inclinations.  相似文献   

13.
开式自然循环系统作为新型非能动余排系统最终热阱排放回路,其安全稳定运行对于事故工况下堆芯余热安全导出至关重要,本研究通过可视化实验方法观察了开式自然循环系统出口排热管内流型演化特性,发现随着加热功率增加,开式自然循环逐步建立,该系统出口排热管内依次出现单相流、间歇性汽泡流、弥散泡状流、弹状流和间歇喷射流5种典型流型,分析了出口排热管内流型与系统稳定运行之间的关系,发现了开式自然循环系统剧烈振荡的根源,为提高开式自然循环系统流动稳定性提供了参考。   相似文献   

14.
The Purdue NMR (Novel Modular Reactor) represents a BWR-type small modular reactor with a significantly reduced reactor pressure vessel (RPV). Specifically, the NMR is one third the height and area of a conventional BWR RPV with an electrical output of 50 MWe. Experiments are performed in a well-scaled test facility to investigate the thermal hydraulic flow instabilities during the startup transients for the NMR. The scaling analysis for the design of natural circulation test facility uses a three-level scaling methodology. Scaling criteria are derived from non-dimensional field and constitutive equations. Important thermal hydraulic parameters, e.g. system pressure, inlet coolant flow velocity and local void fraction, are analyzed for slow and fast normal startup transients. Flashing instability and density wave oscillation are the main flow instabilities observed when system pressure is below 0.5 MPa. And the flashing instability and density wave oscillation show different type of oscillations in void fraction profile. Finally, the pressurized startup procedure is recommended and tested in current research to effectively eliminate the flow instabilities during the NMR startup transients.  相似文献   

15.
The SIRIUS-N facility was designed and constructed for highly accurate simulation of core-wide and regional instabilities of a natural circulation BWR. A real-time simulation was performed in the digital controller for modal point kinetics of reactor neutronics and fuel-rod conduction on the basis of measured void fractions in reactor core sections of the thermal-hydraulic loop. Stability experiments were conducted for a wide range of thermal-hydraulic conditions, power distributions, and fuel rod time constants, including the nominal operating conditions of a typical natural circulation BWR. The results show that there is a sufficiently wide stability margin under nominal operating conditions, even when void-reactivity feedback is taken into account. The stability experiments were extended to include a hypothetical parameter range (double-void reactivity coefficient and inlet core subcooling increased by a factor of 3.6) in order to identify instability phenomena. The regional instability was clearly demonstrated with the SIRIUS-N facility, when the fuel rod time constant matches the oscillation period of density wave oscillations.  相似文献   

16.
为研究运动条件下铅铋反应堆热工水力特性,开发了运动条件铅铋反应堆瞬态分析系统程序,并完成了对设计的5 MW自然循环小型模块化铅铋反应堆的建模,分析了运动条件对反应堆自然循环热工水力特性的影响。计算结果表明,倾斜条件下,堆芯流量减小,堆芯出口温度升高,在计算最大倾斜角度下,流量减小20%,冷却剂堆芯出口温度升高20 ℃。起伏条件下,起伏幅度和起伏周期越大,对反应堆影响越大,由于系统阻力影响,流量变化较起伏加速度有小于1 s的延时。摇摆条件下,摇摆角度越大和摇摆周期越小,对反应堆影响越大,燃料包壳峰值温度较稳态值高20 ℃以内,对反应堆正常运行时安全性影响较小。  相似文献   

17.
密度波流动不稳定性是影响换热设备安全性和可靠性的重要因素之一,其发生机理十分复杂。本工作基于RELAP5程序对加热通道密度波脉动进行了动态计算分析,揭示了脉动期间流体密度、流量及压降等参数的变化规律,并与两种经典机理进行比较分析。结果表明:密度波脉动期间,通道内流量、密度(空泡)及压降呈周期性脉动,加热通道内轴向不同位置流量不同,进出口流量反相脉动,单向段压降和两相段压降基本反相;加热通道密度波脉动的发生与两相段流量波动传播的延迟性有着密切的关系。  相似文献   

18.
Two-phase flow instability of natural circulation under a rolling motion condition is experimentally studied. The experimental results show the rolling motion induces a fluid flow fluctuation. At the trough point of the flow fluctuation, rolling motion can cause the early occurrence of natural circulation two-phase flow instability, and this case is defined as trough-type flow oscillation. The system stability decreases with increasing rolling amplitude and effect of rolling frequency is nonlinear. The complex overlap effect of trough-type flow oscillation and density wave oscillation can enhance the system coolant fluctuation; this case is defined as complex flow oscillation. Complex flow oscillation may be divided into two types: regular and irregular complex flow oscillations. Irregular complex flow oscillation is a transition type from trough-type flow oscillation to regular complex flow oscillation. Under the same thermal hydraulic conditions, the marginal stability boundary (MSB) of regular complex flow oscillation is similar to that of density wave oscillation without rolling motion, and the influences of rolling parameters on the MSB are slight.  相似文献   

19.
The thermal–hydraulics of barge-mounted floating nuclear desalination plants is the incentive for this study. Laminar flow in tubes in heaving motion is modeled. The friction factor and heat transfer coefficient are obtained. All the equations of laminar flow in steady state are applicable for heeling motion. The effect of ship motions on the laminar developing region is also analyzed. The ship motions can weaken the boundary layer in the laminar developing region and strengthen the laminar frictional resistance. The effect of ship motions on the instability of laminar flow is also investigated. The ship motions do not affect the instability point, but they can shorten the distance between the instability point and the transition point, and cause the transition from laminar flow to turbulent flow to occur earlier.  相似文献   

20.
This work proposes an analytical method of evaluating the effects of design and operating parameters on the low-pressure two-phase natural circulation flow through the annular shaped gap at the reactor vessel exterior surface heated by corium (molten core) relocated to the reactor vessel lower plenum after loss of coolant accidents. A natural circulation flow velocity equation derived from steady-state mass, momentum, and energy conservation equations for homogeneous two-phase flow is numerically solved for the core melting conditions of the APR1400 reactor. The solution is compared with existing experiments which measured natural circulation flow through the annular gap slice model. Two kinds of parameters are considered for this analytical method. One is the thermal–hydraulic conditions such as thermal power of corium, pressure and inlet subcooling. The others are those for the thermal insulation system design for the purpose of providing natural circulation flow path outside the reactor vessel: inlet flow area, annular gap clearance and system resistance. A computer program NCIRC is developed for the numerical solution of the implicit flow velocity equation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号