首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
基于Slater-Pauling曲线,运用"元素替代"成分设计法则,通过单辊旋淬工艺成功制备出Fe69Co8Nb7-xVxB15Cu1(x=0,2,5,7)非晶合金条带。利用XRD、TEM和DSC对合金系的非晶形成能力、热稳定性进行研究,并通过PPMS和B-H磁滞回线仪研究合金系的软磁性能。结果表明:随着V含量的增加,合金系的非晶形成能力、热稳定性和矫顽力逐渐降低,而饱和磁感应强度、居里温度逐渐增高;当x=2时非晶合金具有最宽两次晶化温度区间,热处理温区宽达225.9℃;当x=7时非晶合金具有最佳高温软磁性能,其饱和磁感应强度为0.96 T,矫顽力仅为8.95 A/m,而居里温度高达TC=349.42℃。  相似文献   

2.
采用铜模吸铸法制备了Fe44Co20Nd7Nb4B25大块非晶合金,利用差示扫描量热仪(DSC)、X射线衍射仪(XRD)、高分辨透射电镜(HRTEM)和振动样品磁强计(VSM)研究了该合金的结构、非晶形成能力、热稳定性及磁性能.结果表明:该合金为完全非晶结构,在室温下表现为良好的软磁性,并具有较好的非晶形成能力和热稳定性,晶化激活能Ep为642 kJ/mol.退火后该合金表现为硬磁性,退火温度为1003 K时,内禀矫顽力iHc达到最大值,为l164kA/m;退火温度为963 K时,剩余磁感应强度研和最大磁能积(BH)max的值最大,分别为0.27 T和15.79 kJ/m3.  相似文献   

3.
采用单辊快淬法制备Fe80Zr5Nb4B11合金,并在不同温度下对其进行退火,研究热处理对该合金的结构和磁性能的影响。利用X射线衍射(XRD)和透射电镜(TEM)表征合金的结构,利用振动样品磁强计(VSM)测量合金的磁性能。结果表明:随着退火温度的增加,α-Fe晶体相从非晶基体中析出;晶粒尺寸逐渐增大;Fe80Zr5Nb4B11合金的比饱和磁化强度(Ms)在300℃下降,之后保持持续上升的趋势;而矫顽力(Hc)的变化相对复杂,呈现先上升→下降→上升的趋势,这些特征与其微观结构密切相关。  相似文献   

4.
Zr,Nb对Fe—B合金非晶形成能力的影响   总被引:7,自引:0,他引:7  
马立群  王立民 《金属学报》1999,35(6):631-633
根据获得高玻璃形成能力(GFA)非晶合金的多元化理论,研究了Zr,Nb对二元Fe-B非晶合金GFA的影响,结果表明,高B含量Fe-B非晶合金中加入适量Zr能够促进玻璃态转变,三元Fe-B-Zr非晶合金中加入少量Nb能够有效地提高其GFA,多元化是促进非晶合金玻璃态转变和提高其GFA的有效方法。  相似文献   

5.
研究了高温氧化对铁基非晶Fe78Si9B13合金软磁性能的影响。结果表明:非晶Fe78Si9B13合金带材经高温氧化处理后,在其表面形成了一层厚度约为10μm的高电阻率铁的氧化物层;Fe78Si9B13合金高温氧化磁化变得困难,且饱和磁感应强度Bs由氧化前的Bs=1.42~1.46 T下降到氧化后的Bs=1.29~1.38 T。同时,对非晶Fe78Si9B13合金带材经高温氧化处理后磁化困难的原因进行了讨论。  相似文献   

6.
选择Fe-B-Y作为基础的三元合金系,选择最密堆的CN10 Archimedes八面体反棱柱Fe8B3作为基本团簇,Y作为胶粘原子,3at%Nb作为微合金化元素,形成四元合金:(Fe8B3-Y)97-Nb3,以不同含量的Ni替换Fe,形成五元合金:[(Fe1-xNix)8B3-Y]97-Nb3(x=6、14、22、30),用吸铸法制备出直径为2 mm的块体非晶合金。结果表明,在4个非晶合金成分中,当x=6时,合金具有最高的玻璃形成能力,同时具有最好的软磁性能:饱和磁感应强度为87.7 emu/g,矫顽力为7 Oe。  相似文献   

7.
采用单辊甩带法制备了Co43Fe20Ta5.5B31.5非晶合金薄带,利用差热分析、X-射线衍射以及振动样品磁强计研究了等温晶化和非等温晶化条件下晶化对显微组织和磁性能的影响.结果表明,等温晶化时,饱和磁感应强度Ms和矫顽力Hc都随晶化体积分数α的增加而增加.经过928 K保温55 min的晶化处理以后,合金的Ms值由制备态的37.2增加到58.4 A·m2/kg,与此同时矫顽力也由制备态的1.25×79.6 A/m增加到634.45×79.6 A/m.当只有(Co, Fe)21Ta2B6相析出时,Hc和Ms的增加幅度都比较小.随着晶化的进行,当晶体相(Co,Fe)3B2和(Co,Fe)B析出时Hc和Ms都发生突然增高.在非等温晶化条件下,Ms随终止温度的提高而单调增大,但增加幅度很小.Hc随终止晶化温度的提高而变化的幅度较大,并且变化非单调.在第1个晶化峰温度范围之内时,Hc随终止温度升高而提高,但终止温度高于第2个晶化峰结束温度时,矫顽力又急剧下降.终止温度从968 K提高到1153 K时,Ms从61.74增加到67.7 A·m2/kg, 矫顽力由267.6×79.6增加到416.2×79.6 A/m.当终止温度进一步提高到1273 K时,矫顽力又下降为152.2×79.6 A/m.  相似文献   

8.
9.
采用水冷铜模吸铸法制备了一系列直径为2mm的(Fe72Dy6B22)1-xNbx(x=0.02,0.03,0.04,0.05)和(Fe72Dy6B22)1-xTix(x=0.01,0.02,0.03,0.04)非晶合金棒,并测试了块体非晶合金的结构、热稳定性和软磁性能。结果表明:一定量的Nb、Ti的添加有助于改善合金的热稳定性和非晶形成能力。其中(Fe72Dy6B22)0.96Nb0.04的过冷液相区宽度ΔTx高达58℃,饱和磁感应强度为75.2 emu/g,该合金同时具有较大的热稳定性、较强的玻璃形成能力和较好的软磁性能。  相似文献   

10.
采用铜模吸铸法成功制备了直径为1 mm的Co_(46)Fe_(20)B_(23.5)Si_(4.5)Nb_6非晶棒材,随后在570~800℃对该非晶合金进行等温退火处理,研究退火温度及时间对其晶化行为及软磁性能的影响。结果表明:Co_(46)Fe_(20)B_(23.5)Si_(4.5)Nb_6非晶合金的玻璃转化温度(T_g)为582.95℃,第一次晶化温度为(T_x)为636.53℃,过冷液相区(ΔT)为53.58℃。铸态Co_(46)Fe_(20)B_(23.5)Si_(4.5)Nb_6非晶合金具有良好的软磁性能,其饱和磁化强度为74.82 emu/g,矫顽力为3.34 G。经过570℃或620℃退火,非晶合金的软磁性能得到明显提高,其中在620℃退火保温5 min后合金得到最大的饱和磁化强度(79.51 emu/g)和最小的矫顽力(1.02 G),具有最优的软磁性能。  相似文献   

11.
通过7种不同的温度对非晶合金Fe69 Al5 Ga2 P9.6s B4.6Si3 C6.75进行了退火处理,以研究退火温度对合金磁性能的影响.试验磁性能数据表明,合金的饱和磁化强度随退火温度的升高先增加后急剧减小,在450℃时的值最大,M.为628.76emu/g;而矫顽力曲线和剩磁比曲线的走势相近,且在490℃附近的值较小,其软磁性能较好.试验证明,合金的最大饱和磁化强度的退火温度与软磁性能最佳的退火温度不是同一温度值,其综合磁性能的退火温度应选择450~490℃之间的值.  相似文献   

12.
具有宽过冷液相区的多元Fe基非晶合金的热稳定性和磁性   总被引:2,自引:0,他引:2  
研究了具有宽过冷液相区的Fe-(Nb)-Al-Ge-P-C-B非晶合金及其热稳定性和磁性,结果表明,少量Nb元素能够有效地提高热稳定性和玻璃形成能力,最大过冷液相区可达65.7K,非晶合金具有好的软磁性能,饱和磁化强度较高,饱和磁致伸缩系数较低,在接近晶化温度下进行退火处理能够有效地降低频顽力,改善软磁性能,晶化导致软磁性显著下降,Fe基非晶合金热稳定性的高低与其软磁性有一致性,即高热稳定性的非晶合金具有更好的软磁性能。  相似文献   

13.
Fe Co Ga P C B铁基非晶合金的软磁性能〔1〕 近年来发现了一系列铁基的多元非晶合金Fe (Al,Ga) (P ,C ,B ,Ge ,Si)和Fe (Nb ,Mo ,Zr ,W ) B等 ,它们具有很大的过冷液相区 (5 8~ 88K)并能用铜模铸造法生产 2~ 6mm直径的非晶态棒材。但这些大块非晶合金含Fe量都少于 73% (原子 ) ,以致饱和磁化强度不高 (<1 1T)。最近开发了含Fe更高的高饱和磁化强度 (1 3T左右 )块体非晶合金Fe75Ga5P12C4 B4 。为了进一步改善这一合金的性能 ,研究了加Co的效果。研究用的合金是由纯铁、钴、镓和预制合金铁碳、铁磷块、纯硼晶体原料配料在…  相似文献   

14.
利用单辊快淬法制备了Fe84Zr7B9非晶合金,并对其进行了不同温度的退火处理,在降温过程中采用不抽真空和持续抽真空两种方式.利用X射线衍射(XRD)和透射电镜(TEM)研究了热处理后合金的物相及显微组织.结果表明:在退火降温过程中不抽真空时,Fe84Zr7B9非晶合金的初始晶化产物为α-Fe相和B2O3相,晶化过程为...  相似文献   

15.
16.
采用单辊旋淬法制备出Fe69Co8Nb7-xVxB15Cu1(x=0,2,5,7)系列非晶合金,将非晶合金在不同温度进行退火,通过X射线衍射仪、透射电镜和B-H磁滞回线仪对退火后合金的微观组织和软磁性能进行分析。结果表明:退火温度对合金的微观组织和软磁性能影响显著,当TaTg时,由于结构弛豫,内应力的释放,非晶合金的矫顽力(Hc)降低;当Tx1TaTx2时,由于bcc结构α-Fe(Co)纳米晶相的析出,合金的饱和磁感应强度(Bs)明显增大;当TaTx2时,由于α-Fe(Co)晶粒粗化和非磁性相的析出,合金的软磁性能急剧恶化。其中Fe69Co8Nb5V2B15Cu1非晶合金在580℃退火1 h,表现出极为优异的软磁性能,其Bs=1.15 T,Hc=0.9928 A/m,μi=48460,而Fe69Co8V7B15Cu1非晶合金在650℃退火1 h,则发生软磁到硬磁性能的转变。  相似文献   

17.
采用差式扫描量热方法进行热分析实验,研究不同加热速率下非晶合金条带Fe73.5Cu1Nb3Si13.5B9的晶化动力学特性.DSC曲线的晶化温度和晶化峰值温度随着加热速率的增高而向高温方向迁移,说明合金的晶化过程表现出明显的动力学特性.建立基辛格模型,拟合动力学模型函数对结晶率的实验曲线,可以获得动力学参数值,得出晶化激活能的数值为2.89 eV.研究表明:对于Fe73.5 Cu1Nb3Si13.5B9合金,采用经验的双参数Sestak-Berggre模型能更加定量描述其晶化过程,而Johnson-Mehl-Avrami模型适宜在较低加热速率下描述.  相似文献   

18.
Cu47Ti34Zr11Ni8块体非晶合金的制备   总被引:2,自引:5,他引:2  
采用差压铸造法成功制备了圆棒状与板片状的Cu417Ti34Zr11Ni8块体非晶合金,研究了合金的热稳定性。在试验条件下,Cu47Ti34Zr11Ni8块体非晶合金棒状试样的最大直径可达3mm,板片状试样的最大厚度可达1mm。该成分块体非晶合金具有良好的热稳定性,其玻璃转变温度Tg=672K,晶化温度Txl=735K,过冷液相区△Tx=63K,约化玻璃温度Trg=0.575。  相似文献   

19.
利用高频感应加热的快速晶化方法,对Nd8Fe86B6非晶带进行了晶化退火处理.采用X射线衍射和TEM对原淬态和晶化后的薄带进行了微观组织的分析,用VSM对淬态和快速晶化后薄带的磁学性能进行了测量.观察了在不同晶化条件下Nd8Fe86B6非晶的结构变化以及对其磁性的影响.试验结果表明,快速加热可使非晶带迅速晶化.加热速度和加热时间显著地影响薄带的组织及磁性能.随着加热速度的提高,α-Fe与Nd2Fe14B两相的析出越趋于接近,但过高的加热速度亦使α-Fe过快长大.在快速晶化过程中,α-Fe的长大速度仍大于Nd2Fe14B,因此过长的加热时间将使得α-Fe过度长大.因此,一个较理想的磁学性能都应有一个适合的加热条件相配合.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号