首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lipid droplets (LDs) are intracellular organelles that are ubiquitous in many types of cells. The LD core consists of triacylglycerols (TGs) surrounded by a phospholipid monolayer and surface proteins such as perilipin 2 (PLIN2). Although TGs accumulate in the phospholipid bilayer of the endoplasmic reticulum (ER) and subsequently nascent LDs buds from ER, the mechanism by which LD proteins are transported to LD particles is not fully understood. Sar1 is a GTPase known as a regulator of coat protein complex Ⅱ (COPⅡ) vesicle budding, and its role in LD formation was investigated in this study. HuH7 human hepatoma cells were infected with adenoviral particles containing genes coding GFP fused with wild-type Sar1 (Sar1 WT) or a GTPase mutant form (Sar1 H79G). When HuH7 cells were treated with oleic acid, Sar1 WT formed a ring-like structure around the LDs. The transient expression of Sar1 did not significantly alter the levels of TG and PLIN2 in the cells. However, the localization of PLIN2 to the LDs decreased in the cells expressing Sar1 H79G. Furthermore, the effects of Sar1 on PLIN2 localization to the LDs were verified by the suppression of endogenous Sar1 using the short hairpin RNA technique. In conclusion, it was found that Sar1 has some roles in the intracellular distribution of PLIN2 to LDs in liver cells.  相似文献   

2.
BODIPY-based molecular rotors are highly attractive imaging tools for imaging intracellular microviscosity in living cells. In our study, we investigated the ability to detect the microviscosity of biological objects by using BDP-NO2 and BDP-H molecular rotors. We describe in detail the optical properties of BDP-NO2 and BDP-H molecular rotors in aqueous media with and without proteins, together with their accumulation dynamics and localization in live and fixed human breast cancer cells. Furthermore, we investigate the applicability of these molecules to monitor microviscosity in the organelles of human breast cancer cells by fluorescence lifetime imaging microscopy (FLIM). We demonstrate that the BDP-NO2 molecular rotor aggregates in aqueous media and is incompatible with live cell imaging. The opposite effect is observed with BDP-H which preserves its stability in aqueous media, diffuses through the plasma membrane and accumulates in lipid droplets (LDs) and the cytosol of both live and fixed MCF-7 and MDA-MB-231 cancer cells. Finally, by utilizing BDP-H we demonstrate that LD microviscosity is significantly elevated in more malignant MDA-MB-231 human breast cancer cells, as compared to MCF-7 breast cancer cells. Our findings demonstrate that BDP-H is a water-compatible probe that can be successfully applied to measure microviscosity in the LDs of living cells.  相似文献   

3.
A distributed population balance model of influenza A virus replication in adherent Madin-Darby canine kidney cells has been developed to reproduce and interpret flow cytometry data for virus propagation in microcarrier culture. The population of cells is differentiated into uninfected, infected and degraded cells. As an internal coordinate the number of intracellular viral components is considered. The main focus of the model is to link the time course of intracellular virus protein accumulation monitored by flow cytometry with the total yield of virus particles measured by the hemagglutination assay. The model allows simulating the extracellular virus dynamics for multiplicities of infection in the range 0.025-3.0. Shape of predicted histograms is in general agreement with distributions obtained by flow cytometry. Differences in time course at about 12-14 and 20 h post infection indicate that additional assumptions on intracellular virus dynamics are required to fully explain experimental data. Furthermore, prerequisites for virus replication, like receptor binding sites, the number of endosomes or the demand for free amino acids and nucleotides for virus synthesis can be estimated and compared with cellular resources available. Simulation results suggest that intracellular pools of free amino acids as well as early cell death due to influenza virus-induced apoptosis can limit virus yields. It is expected that based on a better understanding of the infectivity status of cells and the spreading of viruses in population of cells in bioreactors strategies on design and optimization of vaccine production processes can be developed.  相似文献   

4.
Mitochondria are important organelles involved in metabolism and programmed cell death in eukaryotic cells. In addition, mitochondria are also closely related to the innate immunity of host cells against viruses. The abnormality of mitochondrial morphology and function might lead to a variety of diseases. A large number of studies have found that a variety of viral infections could change mitochondrial dynamics, mediate mitochondria-induced cell death, and alter the mitochondrial metabolic status and cellular innate immune response to maintain intracellular survival. Meanwhile, mitochondria can also play an antiviral role during viral infection, thereby protecting the host. Therefore, mitochondria play an important role in the interaction between the host and the virus. Herein, we summarize how viral infections affect microbial pathogenesis by altering mitochondrial morphology and function and how viruses escape the host immune response.  相似文献   

5.
目的分析森林脑炎病毒不同感染途径对小鼠模型的致病性、病毒分布及增殖动态。方法将适应原代地鼠肾(primary hamster kidney,PHK)细胞的森林脑炎病毒进行10倍系列稀释,取4个连续稀释度的病毒液,分别通过脑腔注射、灌胃、滴鼻、肌肉注射、腹腔注射的感染方式,对昆明小鼠进行攻毒,逐日连续观察14 d,计算半数致死量(median lethal dose,LD50);并分别取攻毒后第3、5、7天发病典型的腹腔感染组小鼠脑、肺、肾脏、肝脏、心脏、小肠、血液7种组织器官,采用蚀斑法检测病毒滴度。结果脑腔、灌胃、滴鼻、肌肉注射和腹腔注射攻毒方式的LD50分别为10、105.1、105、101.2和102PFU/mL。所有攻毒途径小鼠的脑腔中病毒滴度最高,达109PFU/mL,肺组织为106.5PFU/mL,肾脏为105PFU/mL,心脏和肝脏中病毒滴度较低,分别为102和101.5PFU/mL,肠道中出现一过性病毒感染,而血液中病毒滴度最高为105.5PFU/mL。结论森林脑炎病毒可通过多种途径感染小鼠模型,除具有较强易感性的脑组织外,对肺组织细胞同样具有较强的感染性。  相似文献   

6.
Choline phosphotransferase and phosphatidyl ethanolamine methyltransferase enzymatic activities (nmoles phosphatidyl choline/min/mg protein) have been determined in spleen microsomes of Rauscher virus infected balb/c male mice at 5, 10, 14, and 21 days following inoculation of the virus. There is a significant stimulation of the choline phosphotransferase activity in the virus infected spleens with the peak of activity at about 10 days of viral infection. The specific activity of choline phosphotransferase is 10 times that of the phosphatidyl ethanolamine methyltransferase at 10 days of viral infection. There is a 51-fold increase over controls for the total microsomal choline phosphotransferase at 14 days of viral infection and only an 18-fold increase over controls for the phosphatidyl ethanolamine methyltransferase activity. There is a significant (P less than 0.001) increase over controls in the concentration of total phospholipid-P, phosphatidyl choline-P, and phosphatidyl choline-P fractions as separated by argentation chromatography of microsomes from spleens of mice infected with Friend virus of Rauscher virus for 14 days. The choline phosphotransferase and phosphatidyl ethanolamine methyltransferase specific activities in liver microsomes of 14 day Friend and/or Rauscher virus are unaltered during viral infection.  相似文献   

7.
The effect of herpes simplex virus type 2 infection on the synthesis of phospholipids in human embryo fibroblasts was determined at temperatures permissive (35 C) or nonpermissive (42 C) for virus replication. Incorporation of [32P]i was decreased by herpes simplex virus type 2 in fection after 6 hr, which corresponds to the time of initiation of progeny virus production. No differences were observed in the relative incorporation of [32P]i into phospholipid classes. In another series of experiments, cells were labeled with [3H] ethanolamine before infection and with [14C] ethanolamine after infection. The incorporation of [14C] ethanolamine was also decreased after 6 hr of infection. When choline was substituted for ethanolamine, a similar, although less pronounced, decrease in incorporation was seen in infected cells compared to mock-infected cells. During abortive infection at 42 C, incorporation of [3H] thymidine into cellular DNA was stimulated, but the incorporation of phospholipid precursors was decreased. Total phospholipid composition and phospholipid acyl group composition were not changed appreciably during abortive or productive infection, regardless of whether the cells were labeled before or after infection. In conclusion, these data indicated that, during herpes simplex virus type 2 infection, the incorporation of lipid prescursors into phospholipid was decreased. The stimulation of cellular DNA synthesis previously observed during abortive infection at 42 C was not paralleled by a detectable stimulation of total phospholipid synthesis. Neither productive nor abortive infection resulted in significant phospholipid compositional changes in the host cell; however, both resulted in a marked inhibition of phospholipid synthesis.  相似文献   

8.
The breakdown of lipid droplets (LDs) provides energy and contributes to the proliferation and migration of cancer cells. Recent studies have suggested that motility plays a key role in LD breakdown. However, the molecular mechanisms underlying LD motility were poorly characterized. In this study, we examined the function of microfilament-associated proteins 2 and 3 (ARP2 and ARP3) in regulating LDs’ motility in Hela cells. ARP2/3 mediated the LDs’ physical contact with F-actin and promoted the recruitment of Myosin Heavy Chain 9 (MYH9). MYH9 regulated the LD content by binding with LDs and ARP2/3. The number of LDs and TG content was increased after MYH9 interfered. The genes related to FA-related genes and neutral lipid synthesis-related genes were significantly increased (p < 0.05) when ARP2 and ARP3 were overexpressed. Bioinformatic analysis indicated that the high expression of ARP2/3 was associated with a poorer prognosis in cervical squamous cell carcinoma (CSCC). This study showed the effect of cytoskeletal filaments on LD metabolism in cancer cells.  相似文献   

9.
10.
The effect of the antiviral peptide TAT-I24 on viral gene expression in cells infected with murine cytomegalovirus (MCMV) was investigated. The expression of immediate-early, early and late genes was highly induced upon infection with MCMV. In the presence of the peptide, the expression of all tested genes was sustainably reduced to a similar extent, independent of whether they were immediate-early, early or late genes. In contrast, the expression of host genes, such as NF-κB inhibitor alpha (Nfkbia), interferon-induced protein with tetratricopeptide repeats 1 (Ifit1), chemokine (C-X-C motif) ligand 10 (Cxcl10), chemokine (C-C motif) ligand 7 (Ccl7) and chemokine (C-C motif) ligand 5 (Ccl5), which are induced early upon virus infection, was only transiently suppressed in peptide-treated cells. The expression of other host genes which are affected by MCMV infection and play a role in endoplasmic reticulum stress or DNA-damage repair was not inhibited by the peptide. A combination of TAT-I24 with the nucleoside analogue cidofovir showed enhancement of the antiviral effect, demonstrating that viral replication can be more efficiently inhibited with a combination of drugs acting at different stages of the viral life-cycle.  相似文献   

11.
The SARS-CoV-2 disease presents different phenotypes of severity. Comorbidities, age, and being overweight are well established risk factors for severe disease. However, innate immunity plays a key role in the early control of viral infections and may condition the gravity of COVID-19. Natural Killer (NK) cells are part of innate immunity and are important in the control of virus infection by killing infected cells and participating in the development of adaptive immunity. Therefore, we studied the short tandem repeat (STR) transmembrane polymorphisms of the major histocompatibility complex class I chain-related A (MICA), an NKG2D ligand that induces activation of NK cells, among other cells. We compared the alleles and genotypes of MICA in COVID-19 patients versus healthy controls and analyzed their relation to disease severity. Our results indicate that the MICA*A9 allele is related to infection as well as to symptomatic disease but not to severe disease. The MICA*A9 allele may be a risk factor for SARS-CoV-2 infection and symptomatic disease.  相似文献   

12.
13.
14.
Mosquito-borne Zika virus (ZIKV) became a real threat to human health due to the lack of vaccine and effective antiviral treatment. The virus has recently been responsible for a global outbreak leading to millions of infected cases. ZIKV complications were highlighted in adults with Guillain–Barré syndrome and in newborns with increasing numbers of congenital disorders ranging from mild developmental delays to fatal conditions. The ability of ZIKV to establish a long-term infection in diverse organs including the kidneys has been recently documented but the consequences of such a viral infection are still debated. Our study aimed to determine whether the efficiency of ZIKV growth in kidney cells relates to glucose concentration. Human kidney HK-2 cells were infected with different ZIKV strains in presence of normal and high glucose concentrations. Virological assays showed a decrease in viral replication without modifying entry steps (viral binding, internalization, fusion) under high glucose conditions. This decrease replication was associated with a lower virus progeny and increased cell viability when compared to ZIKV-infected HK-2 cells in normal glucose concentration. In conclusion, we showed for the first time that an elevated glucose level influences ZIKV replication level with an effect on kidney cell survival.  相似文献   

15.
The COVID-19 pandemic is caused by the 2019–nCoV/SARS-CoV-2 virus. This severe acute respiratory syndrome is currently a global health emergency and needs much effort to generate an urgent practical treatment to reduce COVID-19 complications and mortality in humans. Viral infection activates various cellular responses in infected cells, including cellular stress responses such as unfolded protein response (UPR) and autophagy, following the inhibition of mTOR. Both UPR and autophagy mechanisms are involved in cellular and tissue homeostasis, apoptosis, innate immunity modulation, and clearance of pathogens such as viral particles. However, during an evolutionary arms race, viruses gain the ability to subvert autophagy and UPR for their benefit. SARS-CoV-2 can enter host cells through binding to cell surface receptors, including angiotensin-converting enzyme 2 (ACE2) and neuropilin-1 (NRP1). ACE2 blockage increases autophagy through mTOR inhibition, leading to gastrointestinal complications during SARS-CoV-2 virus infection. NRP1 is also regulated by the mTOR pathway. An increased NRP1 can enhance the susceptibility of immune system dendritic cells (DCs) to SARS-CoV-2 and induce cytokine storm, which is related to high COVID-19 mortality. Therefore, signaling pathways such as mTOR, UPR, and autophagy may be potential therapeutic targets for COVID-19. Hence, extensive investigations are required to confirm these potentials. Since there is currently no specific treatment for COVID-19 infection, we sought to review and discuss the important roles of autophagy, UPR, and mTOR mechanisms in the regulation of cellular responses to coronavirus infection to help identify new antiviral modalities against SARS-CoV-2 virus.  相似文献   

16.
Although once perceived as inert structures that merely serve for lipid storage, lipid droplets (LDs) have proven to be the dynamic organelles that hold many cellular functions. The LDs’ basic structure of a hydrophobic core consisting of neutral lipids and enclosed in a phospholipid monolayer allows for quick lipid accessibility for intracellular energy and membrane production. Whereas formed at the peripheral and perinuclear endoplasmic reticulum, LDs are degraded either in the cytosol by lipolysis or in the vacuoles/lysosomes by autophagy. Autophagy is a regulated breakdown of dysfunctional, damaged, or surplus cellular components. The selective autophagy of LDs is called lipophagy. Here, we review LDs and their degradation by lipophagy in yeast, which proceeds via the micrometer-scale raft-like lipid domains in the vacuolar membrane. These vacuolar microdomains form during nutrient deprivation and facilitate internalization of LDs via the vacuolar membrane invagination and scission. The resultant intra-vacuolar autophagic bodies with LDs inside are broken down by vacuolar lipases and proteases. This type of lipophagy is called microlipophagy as it resembles microautophagy, the type of autophagy when substrates are sequestered right at the surface of a lytic compartment. Yeast microlipophagy via the raft-like vacuolar microdomains is a great model system to study the role of lipid domains in microautophagic pathways.  相似文献   

17.
MicroRNAs (miRNAs) play versatile roles in multiple biological processes. However, little is known about miRNA’s involvement in flavivirus persistent infection. Here, we used an miRNA array analysis of Japanese encephalitis virus (JEV)-infected cells to search for persistent infection-associated miRNAs in comparison to acute infection. Among all differentially expressed miRNAs, the miR-125b-5p is the most significantly increased one. The high level of miR-125b-5p in persistently JEV-infected cells was confirmed by Northern analysis and real-time quantitative polymerase chain reaction. As soon as the cells established a persistent infection, a significantly high expression of miR-125b-5p was readily observed. Transfecting excess quantities of a miR-125b-5p mimic into acutely infected cells reduced genome replication and virus titers. Host targets of miR125b-5p were analyzed by target prediction algorithms, and six candidates were confirmed by a dual-luciferase reporter assay. These genes were upregulated in the acutely infected cells and sharply declined in the persistently infected cells. The transfection of the miR125b-5p mimic reduced the expression levels of Stat3, Map2k7, and Triap1. Our studies indicated that miR-125b-5p targets both viral and host sequences, suggesting its role in coordinating viral replication and host antiviral responses. This is the first report to characterize the potential roles of miR-125b-5p in persistent JEV infections.  相似文献   

18.
Mitochondria are vital intracellular organelles that play an important role in regulating various intracellular events such as metabolism, bioenergetics, cell death (apoptosis), and innate immune signaling. Mitochondrial fission, fusion, and membrane potential play a central role in maintaining mitochondrial dynamics and the overall shape of mitochondria. Viruses change the dynamics of the mitochondria by altering the mitochondrial processes/functions, such as autophagy, mitophagy, and enzymes involved in metabolism. In addition, viruses decrease the supply of energy to the mitochondria in the form of ATP, causing viruses to create cellular stress by generating ROS in mitochondria to instigate viral proliferation, a process which causes both intra- and extra-mitochondrial damage. SARS-COV2 propagates through altering or changing various pathways, such as autophagy, UPR stress, MPTP and NLRP3 inflammasome. Thus, these pathways act as potential targets for viruses to facilitate their proliferation. Autophagy plays an essential role in SARS-COV2-mediated COVID-19 and modulates autophagy by using various drugs that act on potential targets of the virus to inhibit and treat viral infection. Modulated autophagy inhibits coronavirus replication; thus, it becomes a promising target for anti-coronaviral therapy. This review gives immense knowledge about the infections, mitochondrial modulations, and therapeutic targets of viruses.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号